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ABSTRACT 
 
 
 

The Defense Finance Accounting Service DFAS-Operation Mongoose (Internal 

Review - Seaside) is using new and innovative techniques for fraud detection. Their 

primary techniques for fraud detection are the data mining tools of classification trees and 

neural networks as well as methods for pooling the results of multiple model fits. In this 

thesis a new data mining methodology, Multiple Additive Regression Trees (MART) is 

applied to the problem of detecting potential fraudulent and suspect transactions (those 

with conditions needing improvement – CNI’s). The new MART methodology is an 

automated method for pooling a “forest” of hundreds of classification trees. This study 

shows how MART can be applied to fraud data. In particular it shows how MART 

identified classes of important variables and that MART is as effective with raw input 

variables as it is with the categorical variables currently constructed individually by 

DFAS. MART is also used to explore the effects of the substantial amount of missing 

data in the historical fraud database. In general MART is as accurate as existing methods, 

requires much less effort to implement saving many man-days, handles missing values in 

a sensible and transparent way, and provides features such as identifying more important 

variables.  
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EXECUTIVE SUMMARY 
 
 
 

Classification and Regression Trees (CART) and Neural Networks (NN) are the 

primary techniques used by Defense Finance and Accounting Service (DFAS), Operation 

Mongoose (Internal Review – Seaside), for fraud detection.  In this thesis a new data 

mining methodology, Multiple Additive Regression Trees (MART) is applied to the 

problem of detecting potential fraudulent and suspect transactions (those with conditions 

needing improvement – CNI’s).  The new MART methodology is an automated method 

for pooling a “forest” of hundreds of classification trees.  This study shows how MART 

can be applied to fraud data. In particular it shows how MART identifies classes of 

important variables and that MART is as effective with raw input variables as it is with 

the categorical variables currently constructed individually by DFAS.  MART is also 

used to explore the effects of the substantial amount of missing data in the historical 

fraud database.  In general MART is as accurate as existing methods, requires much less 

effort to implement saving many man-days, handles missing values in a sensible and 

transparent way, and provides features such as identifying more important variables.  

This study helps identify improvements in the ongoing process of data mining, increasing 

the potential of DFAS to detect and contributing to DoD’s goal of combating and 

eliminating fraud. 

This thesis shows the applicability of MART methodology in identifying fraud.  

The thesis also describes the process of identifying the set of variables needed for an 

accurate classification with the MART approach without losing significant information.  

This process is used to explore whether categorical variables created from original 

numeric variables, in a labor- intensive process, actually improve modeling with MART.  

A third major concern explored here, is to whether the current classification models, 

based on the historical Knowledge Base, are detecting the differences between fraud and 

nonfraud patterns or whether they are classifying using other features that differentiate 

the Knowledge Base from the site-specific nonfraud cases.  Fourth, the missing values’ 

pattern in specific fields of the Knowledge Base is analyzed including a report of their 
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role in the process of classifying fraud patterns.  A summary of results from these 

analyses follows.  

The missing values analysis of the Knowledge Base study reveals the relationship 

and importance missing values have on fraud classification.  The nonrandom pattern of 

missing values might contribute to difficulties in fraud prediction.  In particular this 

research gives some insights about the way missing values contribute for increasing the 

odds of observing fraud. In addition, a study of imputing missing values support the way 

MART methodology handles the missing values problem and reveals that no fraud 

prediction advantage is offered by imputing values on missing valued predictors present 

in the actual Knowledge Base.    

The identification of relative importance of variables for classifying fraud and 

CNI’s highlights the most relevant predictors present in the Knowledge Base and CNI 

database.  The study of MART model performance when trained on numerical versus 

categorical variables fo r predicting fraud supports the fact that data do not require being 

transformed, or preprocessed in any way, for MART training purposes.  This fact reveals 

a major advantage DFAS can explore using this methodology, saving time used to 

convert numeric variables into categorical ones.  MART models trained on sets of 

numeric variables performed about as well as the MART models trained on sets of 

categorical variables. 

The comparison of performances of different models so far developed by DFAS 

and the MART models trained on the Knowledge Base for several different auditing sites 

reveal that, in general, MART performance is comparable to other models. The 

importance of this is that MART takes significantly less time and manpower to use than 

methodologies currently used by DFAS.  

In general, the MART methodology is shown to be an alternative tool for 

improving the current process of predicting fraud and CNI’s.  This methodology should 

be seen in an integrated knowledge environment where additional information and 

process improvements are offered.  In addition, the insight that the Knowledge Base is 

potentially training models to classifying and predicting patterns other than fraud 

contributes to arguments that the Knowledge Base repository should be updated as 
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current fraud cases became available.  This will help identify changes or mutations in 

fraud patterns motivated by fraud perpetrators’ intelligence as well as by technology 

evolution or new process transactions. 
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I. INTRODUCTION 

A. PURPOSE 

The Knowledge Discovery in Databases (KDD) process is described by Mannila 

[17] as being an iterative process, in which data mining is seen as one integrated step 

associated with pattern discovery.  Data mining is being used to discover patterns and 

relationships in data, supporting the idea of learning from data.  This relatively new and 

rapidly changing discipline constitutes an interdisciplinary research area lying at the 

intersection of statistics, machine learning, data management and databases, pattern 

recognition, artificial intelligence, and other areas [10].  Predictive data mining is 

concerned with constructing statistical models from historical data in order to predict 

future unknown data values, and / or to help gain insights about the predictive 

relationships presented in the data. 

This thesis will study the use of a new data mining methodology for fraud 

detection.  Classification Trees (CART) and Neural Networks (NN) are the primary 

techniques used by Defense Finance and Accounting Service (DFAS) Operation 

Mongoose (Internal Review – Seaside), for fraud detection.  A recently developed 

technique by Friedman [7], [8], [9], Multiple Additive Regression Trees (MART), offers 

an alternative approach to classification problems.  Particularly attractive for detecting 

fraud and transactions with conditions needing improvements (CNI’s) are MART’s 

ability to handle missing data, operate with continuous as well as categorical predictor 

variables, and evaluate the relative importance of predictor variables.  In addition, this 

research will benefit the sponsor, DFAS-Operation Mongoose (Internal Review – 

Seaside) (referred to as “DFAS” for the remainder of the thesis), by incrementing the 

understanding of the fraud detection process.  The analysis of the existing set of 

transactions known to be fraudulent (the “Knowledge Base” (KB)) and those with CNI’s 

using MART suggests new directions on the fraud detection process.  This study helps 

identify improvements in the ongoing process of data mining, increasing the potential of 

the Project Mongoose in fraud detection, and contributing to DoD’s goal of combating 

and eliminating fraud.  
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B. BACKGROUND 

Every government agency that trades with citizens, vendors or service providers 

risks exposure to irregularities and fraud.  The risk of losing more and more money, 

through fraud, increases every year.  It is to be hoped that agencies can identify 

fraudulent activity by “mining” their existing data. 

The Defense Finance and Accounting Service has incorporated data mining into 

their investigating and auditing processes using historical data and expert knowledge to 

identify fraud patterns through analytical techniques.  Paying billions of dollars worth of 

military bills each year, DFAS is exploring the use of data mining as a way to discover 

billing errors and fraud out of the millions of transactions that DOD processes each year. 

The Defense Finance and Accounting Service’s Operation Mongoose with the 

cooperation of the Defense Manpower Data Center (DMDC) are undertaking the process 

of fraud detection. 

Currently the process of classifying fraud cases is based on training data sets in 

which the known fraud cases came from a small historic (1989 to 1997) database called 

the Knowledge Base.  The nonfraud cases in the training data set are chosen from the 

current transactions of particular sites under study.  There are several issues that need to 

be addressed when using these training data to build models for fraud detection.  The first 

is whether models built on the training data are really distinguishing between fraud and 

nonfraud, or whether they are classifying using other features that differentiate the 

Knowledge Base of fraud cases from the site-specific nonfraud cases.  The second issue 

relates to significant numbers of missing values in specific fields of the Knowledge Base, 

and their role in classifying fraud patterns.  A third issue is that of variable selection.  

Currently models are built based on over 57 variables.  Many of these variables are 

redundant, have missing data or are noninformative.  In particula r a great deal of effort is 

made to categorize continuous variables before using them for data mining.  These 

potentially extraneous variables make model fitting a long and arduous task.  Anything 

that can be done to make the list of variables more manageable will be a great benefit to 

DFAS.  Finally, there is the issue about how MART compares the currently used 

methods, classification trees (which tend to have high misclassification rates) or neural 
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networks (which can be affected by too many redundant or noninformative predictor 

variables).   

This work does not propose that MART take the place of the models currently 

used by DFAS.  The Rashomon Effect, as presented by L. Breiman [1], describes 

perfectly the reasoning of having a multitude of different models, different predictor 

subsets, each one telling a different story about the same unknown reality.  The problem 

of identifying the best model is not a concern of the present work.  Indeed, presumably no 

model will dominate all other.   

C. OPERATION MONGOOSE – DFAS 

As reported by Shawn [22],  historically, fraud in DoD has not received much 

attention.  Action was taken seriously only when occasional isolated cases became highly 

publicized.  The DoD has historically had weak internal controls and a lack of financial 

accountability, which are primary facilitators of fraud. 

To enhance DoD’s fraud detection capability, Operation Mongoose was created in 

1994 with the primary purpose of detecting fraud in retired and annuitant pay, military 

pay, civilian pay, transportation payments, and vendor payments.  Since its inception, it 

has analyzed tens of millions of financial transactions to detect potential cases of error 

and fraud.  Operation Mongoose is the first multi-agency program formed with national 

scope to examine possible financial fraud.  In order to assist in combating fraud, many 

federal agencies have combined forces to form task groups and /or share information.  

For example, Operation Mongoose, the DoD fraud detection unit, has formed an alliance 

with the Defense Manpower Data Center (DMDC) and DoD Inspector General (DoDIG), 

the United States Secret Service, and service audit agencies.  The Defense Finance and 

Accounting Service (DFAS) established a partnership with the Defense Criminal 

Investigative Service (DCIS) and the Air Force Audit Agency.  In February 1998, DFAS 

also created a Fraud Task Force [22]. 

The alliance with DMDC offers Operation Mongoose access to payment and 

supporting data on several different computer systems from different sites.  Indicators 

developed by subject matter experts from DFAS, DMDC and the DoDIG, when matched 
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against transactions ’ information from the different DoD payment systems, help to 

identify anomalies in the data which can in turn to expose fraud or internal control 

weaknesses. 

The different DoD vendor pay systems, Automated Financial Entitlement System 

(AFES), the Computerized Accounts Payable System (CAPS), the Integrated Accounts 

Payable System (IAPS) and the Standard Accounting and Reporting System-Field Level 

(STARS-FL) constitute the data sources.  Information related to invoice, receipt and 

vouchers detail each transaction with information such as unit price, quantity ordered, 

merchandise receipt and costs, dates of receipt, freight amounts, vendor name, address 

and payment type, item description, voucher number, and some accounting data. 

D. SCOPE OF THE THESIS 

This thesis first, analyzes the applicability of MART methodology in data mining 

to identify fraud, and second describes the process of identifying the set of variables 

needed for an accurate classification with the MART approach without losing significant 

information. A third goal addressing a major concern, is to analyze whether the current 

classification models, based on the historical Knowledge Base, are detecting the 

differences between fraud and nonfraud patterns or whether they are classifying using 

other features that differentiate the Knowledge Base from the site-specific nonfraud 

cases.  Fourth, the missing values’ pattern in specific fields of the Knowledge Base is 

analyzed including a report of their role in the process of classifying fraud patterns.  

Finally MART is compared to existing DFAS models. 

E. OUTLINE OF THESIS 

The remainder of the thesis is organized as follows. Chapter II provides a brief 

description of types of fraud, Conditions Needing Improvement (CNI) and how the 

Knowledge Base was constructed. 

Chapter III presents a detailed overview of the MART methodology focusing on 

features pertinent to improving the knowledge about the process of predicting fraud and 

CNI’s, with examples.  
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Chapter IV presents the results of the statistical analysis of the Knowledge Base 

including a missing value analysis.  An analysis about whether the classification models, 

based on the historical Knowledge Base, are detecting the differences between fraud and 

nonfraud patterns or whether they are classifying using other features that differentiate 

the Knowledge Base from the site specific nonfraud cases, is found in this chapter.  In 

addition, the approach MART uses for handling missing values is compared to other 

methods. 

Chapter V approaches the problem of identifying the relative important predictors 

for fraud and CNI prediction, based on the available datasets.  A description and 

discussion of the most significant results are presented here.  Also, related results 

detailing some methods that will save development time working with continuous 

variables are presented. The chapter concludes with an overview and comparison of the 

MART models performance with C5 and NN models developed by DFAS’s expert data 

mining team. 

Finally in Chapter VI this work on classification and fraud prediction is 

summarized.  Findings of the research, and recommendations are presented for further 

research and study. 
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II. FRAUD CLASSIFICATION 

DFAS staff uses three types of data: historical fraud data, data on all current 

transactions and information from audits on selected transactions.  They obtain current 

data from the DMDC, which has the ability to gather data from a variety of computer 

systems from different sites giving IR access to transaction information by field site and 

vendor pay system for a period of eighteen months.  IR also uses subject matter experts 

from DFAS, DMDC and DODIG to develop additional indicators which are incorporated 

into the data. 

The second major source of transaction data used by DFAS is the historical 

database of known fraud, the Knowledge Base. This data consists of 442 transactions 

involving a total of 21 fraud cases detected between 1989 and 1997.  These cases cover 

fraud committed using fake documents (false invoices, false certification of receipts, false 

purchase requests and false vouchers), false employees, and altered documents 

(overpayment, resubmission).  The following figures present the distribution (percentage 

of cases) of fraud type and amounts stolen described and tabled in Shawn [22]. 

 

Fraud practices

Fake Documents
76%

Fake Employee
14%

Altered Documents
10%

 

Figure 2.1  Fraud practices 
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Amounts stolen

<$100K
42%

$100K to $500K
24%

$600K to $1000K
10%

>$1000K
24%

 

Figure 2.2  Amounts stolen 

More detailed information about fraud discovery sources, management control 

violations, status of perpetrator and associated service (Navy, Army, Air Force and Air 

National Guard) are presented in Shawn [22].  A detailed description and discussion of 

the Knowledge Base can be found in Jenkins [12], Shawn [22]. 

Detailed information associated with those reported fraud cases constitutes the 

basis of the fraud historic repository known as Knowledge Base.  Some of those fraud 

cases present more than one irregular transaction, adding up to a total of 442 fraud 

transactions. 

A. CLASSIFICATION OF FRAUD IN THE KNOWLEDGE BASE 

In the initial construction of the Knowledge Base, fraud was classified according 

to six fraudulent payment types rather than using a single fraud/nonfraud binary 

classification.  Experts from DFAS identified these initial six different fraud schemes, 

based on the analysis of both case files and the data set of known fraud payments. 

Subsequent validation of the choice of six different fraud types using principle 

component analysis and clustering along with data from a new fraud case, reduced the 

number of fraud types from six to four. 
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Therefore, the final classification, classifies fraud into Big Systematic, Small 

Systematic, Piggyback and Opportunistic.  Details of the analysis leading to the choice of 

this classification scheme are given in [23]. 

B. CONDITIONS NEEDING IMPROVEMENT 

In an effort to uncover and discourage fraud, all DoD sites responsible for trade 

relations with citizens, service providers, or vendors are subject to periodic visits by 

auditors from different offices of DFAS.  At these visit s a selected number of transactions 

are audited. The results of these audits form a growing database of current transactions 

from each site along with an auditor’s assessment of these transactions.  To choose which 

transactions to audit, prior to each site visit, DFAS performs an analysis of the previous 

eighteen months transactions.  An ensemble of supervised data mining models, trained on 

a mix of the Knowledge Base and transactions from the specific site, and unsupervised 

models are used to identify potential suspect transactions.  Also, duplicated transactions 

are identified for audit and a set of about 50 more transactions is selected randomly.  At 

the site auditors analyze transactions, identifying specific irregularities associated with 

the established contracts.  A detailed checklist of potential irregularities and procedural 

anomalies supports this in-site inspection. 

The application of this checklist forms the foundation of the database of 

Conditions Needing Improvement (CNI’s).  During the process of inspection, auditors 

identify and record each detected irregularity associated with a particular transaction.  

From this detailed information, each irregularity is then classified according to its 

severity or CNI class.  The site visit’s final reports compile all the information associated 

with the inspected transactions and each analyzed transaction has a CNI class assigned to 

it.  This classification of CNI’s is defined as follows: Serious CNI, CNI, Irregularity, and 

No-CNI.  In particular, the No-CNI class is assigned to those transactions that do not 

present any anomaly or associated irregularity and are deemed as nonfraud transactions.  

All the other CNI classes indicate that irregularities or procedural failings were identified, 

but do not constitute evidence of fraud.  Further actions have to be undertaken in order to 
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prove fraudulent practices.  These audit visits constitute only a first step in the process of 

fraud detection.  
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III. MULTIPLE ADDITIVE REGRESSION TREES METHODOLOGY 

A. INTRODUCTION 

Multiple Additive Regression Trees (MART) is a new methodology primarily 

used to solve prediction problems based on the large datasets typically found in Data 

mining applications.  Friedman [7],[8],[9] describes in detail the strategy behind this 

methodology which extends and improves the CART methodology and has greater 

accuracy than CART.  It is easy to implement, automatic and maintains many of the 

desirable features of CART such as robustness.  MART tends to be resistant to 

transformations of predictors and response variables, outliers, missing values, and to the 

inclusion of potentially large numbers of irrelevant predictor variables that have little or 

no effect on the response.  These two last properties are of particular interest since they 

are two of the greatest difficulties when using transaction data to predict fraud.  In this 

chapter a quick overview of MART is given with particular attention to interpreting the 

results, determining the effect of predictor variables on those results, and measuring the 

importance of those variables.  The issues surrounding missing data are dealt with in 

detail in the next chapter.  

B. REVIEW OF MART 

MART is one of a class of methods often referred to as boosting.  Boosting is a 

general method that attempts to “boost” the accuracy of any given learning algorithm 

[21] by fitting a series of models each having a poor error rate and then combining them 

to give an ensemble that may perform very well.  In MART a series of very simple 

classification trees is fit, each taking very little computational effort.  The MART 

classifier is then based on a linear combination of these trees. We describe the MART 

method in great detail in this section.  To do so, first consider a single classification tree 

([2]).  For example Figure 3.1 gives the fit of a very simple tree for predicting the 

response variable ‘FRAUD.01’, (fraud = 1, nonfraud = 0), from the 2 binary predictor 

variables ‘MILPAY’ and ‘INTEREST’.  The terminal nodes of the classification trees 

(also called leaves) represent disjoint regions of the measurement space. 
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Figure 3.1  Classification tree with 4 terminal nodes 

The tree in Figure 3.1 has 4 terminal nodes which splits the space of predictor 

variables into 4 disjoint regions {‘MILPAY’ = 0, ‘INTEREST’ = 0}, {‘MILPAY’= 1, 

‘INTEREST’ = 0}, {‘MILPAY’ = 0, ‘INTEREST’ = 1}, and {‘MILPAY’ = 1, 

‘INTEREST’ = 1}. 

Let 1 ,..., Lx x  , represent the values of  L predictor variables (for a particular case 

or observation) and the vector x = ( 1 ,..., Lx x ) represent the collection of those values.  

The response for an observation is y .  In classification, y  indicates the class to which 

the observation belongs.  For example, for the data used in Figure 3.1, L=2, and y =1 if a 

transaction is fraud and y =0 otherwise.  The terminal nodes of a classification tree split 

the L dimensional space of possible predictor variables into J disjoint 

regions JjR j ,...,1, = .  The tree represents a prediction rule ( )f x  for each possible value 

of predictor variables x  that assigns a constant jγ  for each region JjR j ,...,1, =  so that  

( )j jR f γ∈ ⇒ =x x , 1,...,j J= . 

Thus the parameters of a classification tree which need to be estimated are the 

regions jR  and the corresponding predicted values for each region jγ .  Let { }J
jjR

1
,γ=Θ  

represent the parameters to be estimated for the classification tree and ( )I A∈x be an 

indicator function for the set A  where ( )I A∈x  assumes the value 1 if A∈x  and 0 
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otherwise.  Then the predicted values for a tree can be expressed for predictor variables 

x  as: 

1

( ; ) ( )
J

j j
j

T I Rγ
=

Θ = ∈∑x x . 

Once the jR  are estimated, the parameters jγ  are estimated for each region. In a 

regression problem jγ  is the mean of the 'y s whose 'sx fall in the region jR .  In 

classification where each observation is classified into only one of two categories, such as 

the fraud/nonfraud, jγ  is assigned a value of 1 if the proportion of observations in jR  

whose response y  is 1 is greater than the proportion of observations in jR  whose 

response y  is 0.  In the example of Figure 3.1, the proportion of fraud cases in 1R  is 

greater than for nonfraud, so for 1R , the predicted response 1 1γ =  corresponds to fraud.  

The difficult part is determining the jR , for which approximation algorithms exist.  

Hastie[11] presents a strategy based on a greedy top-down recursive partitioning 

algorithm to find the jR . 

In most classification problems faced by DFAS each observation is classified into 

2K >  categories.  Often, models classify transactions as nonfraud or as one of four 

possible types of fraud categories.  Here 5K = .  When only audited CNI transactions are 

used for training models, transactions are classified as Serious CNI, CNI, Irregularity or 

Non-CNI, giving 4K = .  In the 5K =  example, MART model fit five trees.  The 

response variable for the first tree would be 1y =  if the transaction is nonfraud and 0 

otherwise; for the second tree the response would be 1y =  if the transaction is Bigsys and 

0 otherwise; the third tree would have 1y =  if the transaction is Opportunistic and 0 

otherwise; the next one 1y =  if the transaction is Piggyback and 0 otherwise; and for the 

fifth tree the response would be variable 5 1y =  if the transaction is Smallsys, 0 

otherwise. 

In a simple boosted tree model a large number, M, trees are fit to the data.  For 

each observation, each of the M trees “votes” on how to classify that observation.  Thus 
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for each x  we can represent the prediction made by the boosted tree based on 

1

( ) ( ; )
M

M m
m

f T
=

= Θ∑x x , the number of “votes” the category corresponding to 1y =  gets.  

Clearly, if the proportion of votes 
( )Mf

M
x

 corresponding to 1y =  is greater than 0.5, then 

x ’s class is predicted to be 1.  A generic boosting algorithm can be described as follows, 

where 1,...,m M=  represents the number of trees (iterations): 

Equally weight all the observations ( ),y x ; 

For m= 1 to M 

Fit a classifier ( ; )mT Θx  where mΘ is the estimate of Θ  at the thm step; 

Increase the weight of the observations which are “hard “ to classify; 

Define the boosted classifier as 
1

( ) ( ; )
M

M m
m

f T
=

= Θ∑x x  

Drucker [5] gives a good description of a boosting algorithm of this type, the 

AdaBoost algorithm due to Freund and Schapire.  Here much like MART, the key idea is 

that each classifier (termed a weak learner) is trained sequentially.  A subset of 

observations randomly selected (with replacement), from a training set, is used to train a 

first weak learner.  As the number of trees increase, the individual training error rate 

increases since new weak learners have to classify more and more difficult patterns.  

However, the boosting algorithm shows us that the ensemble training and test error rate 

decrease as the number of weak learners increases.  (see Figure 3.2, adapted from 

Drucker[5]). 
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Figure 3.2  Weak learner error rate, ensemble training and test error rates 

MART is a generalization of the tree boosting that attempts to increase predictive 

accuracy with only a moderate sacrifice of the desirable properties of trees, such as speed 

and interpretability. Due to the boosting process, MART produces an accurate and 

effective off-the-shelf procedure for data mining[11].  

The MART classifier is of the form 

1

( ) ( ; )
M

M m m
m

f Tδ
=

= Θ∑x x  

where the additional parameters mδ , 1,...,m M= , are estimated sequentially at each 

iteration m of the MART algorithm. 

Tuning parameters associated with the MART procedure are the number of 

iterations (individual classification trees) M and the size (number of terminal nodes or 

leaves) of each of the constituent trees mF , 1,...,m M= . 

With MART all trees are restricted to be the same size, mF F= , 1,...,m M= .  A 

F-terminal node classification tree is fit for each iteration.  Thus, F becomes a meta-

parameter of the entire boosting procedure, to be adjusted to maximize estimated 

performance for the data at hand.  
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Besides the size of the constituent trees, F, the other meta-parameter of the 

MART procedure is the number of boosting iterations (individual classification trees) M.  

Using more iterations usually reduces the training risk; however, fitting the training data 

too well can lead to overfitting, which degrades the risk on future predictions.  A 

convenient way to estimate the optimal number of iterations M* is to monitor the 

prediction risk as a function of M on a validation sample.  The value of M that minimizes 

this risk is taken to be an estimate of M*. 

C. INTERPRETING MART 

In general, linear combinations of trees lose the high interpretability of single 

decision trees.  However, there are two tools that are available with MART that help 

interpretation of these models.  This section deals with the MART contribution for 

helping understand boosted tree models: the measurement of relative importance of 

predictor variables and the use of partial dependence plots.  Examples of the use of both 

of these tools are presented here.  

1. Relative Importance of Predictor Variables 

In data mining applications the input variables are seldom equally relevant.  Often 

only a few of them have substantial influence on the response; the vast majority are 

irrelevant and could just as well have not been included.  Ideally, a learning algorithm 

performance would improve when additional information is supplied by new variables.  

But, additional variables can interfere with other more useful ones and reduce the 

algorithm performance.  Thus, it is often useful to learn the relative importance or 

contribution of each input variable in predicting the response. 

 Concerning the set of variables DFAS has to deal with, we are particularly 

interested in finding the variables that historically perform best and then use this set as a 

basis for future learning, recognizing that the identified set will change.  Caruana et al. 

[4] states some advantages of automating the variable selection process: 
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• It is often difficult to determine the effects different variable combinations 

will have on a learning procedure.  Manually selecting variables is 

challenging and frequently leads to inferior selection. 

• It gives the system designer freedom to identify as many potentially useful 

variables as possible and then let the system automatically determine 

which ones to use. 

• It allows new variables to be easily added to a system on the fly. 

• In domains where the world changes, it allows the currently used variables 

to be those best suited to the current state of the world. 

• It allows the set of variables to change dynamically as the amount of 

training data changes. 

Friedman[9] and Hastie[11] offer a related overview about the way MART 

approaches variables selection, based on the concept of relative importance of predictor 

variables.  For a single tree T, the measure of relevance 2 ( )lI T for each predictor variable 

lx , 1,...,l L= , was proposed by Breiman et al [2]: 

1
2 2

1

ˆ( ) 1( ( ) )
J

l t l
t

I T i x t
−

=

= ×∑ . 

This represents the squared relative importance of variable lx  for a single J-sized 

classification tree T where ( )lx t  is the splitting variable associated with node t.  The sum 

is defined over the F−1 internal nodes of the tree T.  At each such node t, one of the 

predictor variables lx  is used to partition the region associated with that node into two 

sub-regions; within each a separate constant is fit to the response values.  The selected 

variable is the one that maximizes the estimated improvement 2
t̂i  in squared error risk 

over that for a constant fit over the entire region.  The sum of the squared improvements 

over all internal nodes for which variable lx  was chosen as the splitting variable gives its 

squared relative importance. 



18 

For multiple additive trees, relative importance measure for each predictor 

variable can be extended as being the average over all trees: 

∑
=

=
M

m
mll TI

M
I

1

2 )(
1

. 

Because lI is a relative measure, in practice the value 100 is assigned to the 

largest value, and all the other ones are scaled accordingly.  

For the case where each observation is classified into 2k >  categories, k  boosted 

trees each composed of M trees is fit.  For predicting the thk category, 1,...,k K= , let kmT , 

1,...,m M= , represent these M trees.  Then for each set of M trees the relevance of the thl  

predictor variable lx  in predicting the thk category can be defined as: 

∑
=

=
M

m
kmllk TI

M
I

1

22 )(
1

, 1,...,l L= , 1,...,k K= . 

In particular the L K×  matrix of these individual measures lkI  is very useful for 

identifying individual contributions.  Column sums 2 2
.

1

L

k lk
l

I I
=

= ∑  give the relative variable 

importance in predicting class k. Row sums 2 2
.

1

K

l lk
k

I I
=

= ∑ represents the influence of lx  in 

predicting the respective classes.  Averaging over all the classes, the squared overall 

relevance of the predictor variable lx  is given by  

∑
=

=
K

k
lkl I

K
I

1

22 1
, 1,...,l L=  . 

The following description illustrates the applicability of MART to the problem of 

CNI prediction.  A reference of commands for MART analysis inside R [8] can be found 

in Appendix A.  

Figure 3.3 shows the results of fitting MART with 14 iterations (M = 14) to the 

OAK-Detailed data (58 predictor variables), selecting a tree-size 3 (F = 3) parameter.  

The overall misclassification rate in the OAK-Detailed set is 33.6%.  Each bar represents 
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one of the CNI classes (1 correspond to Serious CNI, 2 to CNI and 4 to No-CNI).  The 

length of each bar indicates the fraction of the test set observations that were 

misclassified within each class.  

2
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Error rate

C
la

ss
 la

be
l

0.0 0.2 0.4 0.6 0.8 1.0

Total error rate = 0.336

 

Figure 3.3  Total error rate for CNI classification of OAK-Detailed data with 
MART(M=14,F=3). 

The horizontal barplot shows that class 2 (CNI) is the most difficult to classify, 

presenting 100% of the cases misclassified, while class 4 (No-CNI) presents a relatively 

low misclassification rate.  Class 1 (Serious CNI) also presents a considerable 

misclassification rate (80%).  Figure 3.4 gives the detailed misclassification error rate for 

each CNI class.  The CNI class 1 (Serious CNI) and class 2 (CNI) show 

misclassifications with class 4 (No-CNI).  In particular, class 2 (CNI), which shows a 

misclassification of 100%, is being misclassified with CNI class 1 (10%) and CNI class 4 

(90%).  
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Figure 3.4  Misclassification error rate for CNI classes; in classification of OAK-Detailed data 
with MART(M=14, F=3). 

For each CNI category MART constructs fourteen trees of 3 leaves, and therefore 

2 splitting nodes, identifying the twenty-four (24) important variables on differentiating, 

with lowest error rate, all CNI classes (Figure 3.5). 
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Figure 3.5  Relative importance of predictors for CNI classification of OAK-Detailed data with 
MART(M=14, F=3). 

As an example of how MART measures a variable’s relative importance for each 

classification category: consider trying to predict a response variable with four categories 

(ex. Fraud), using trees of size two (F=2; one splitting node −  such a tree is called a 

“stump”) and one iteration (M=1).  It follows that the final ensemble will have one stump 

for each category.  In this way MART identifies the most significant variables 

responsible for separating each category’s observations from the other classes.  With this 

illustrative example, we would end up with at most four variables identified as important, 

one for each generated stump; this particular situation presents the predictor’s squared 

measure of relative importance, given directly by its maximum estimated improvement 

2
t̂i  in squared error risk. 

Using the same data and parameters from the initial example, the predictor 

variable importance for each CNI class is presented in Figure 3.6. 
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Figure 3.6  Predictor variable importance for each of the three CNI class for OAK-Detailed 
data with MART(M=14, F=3). 

Besides a variable’s relative importance, it might be interesting to know, for a 

given predictor variable, which classes it helps identify best.  Following the example of 

classification for OAK-Detailed data with MART(M=14, J=3), one can see in Figure 3.7 

the contribution of the predictor variable ‘ALLX’ in classifying class 2 and class 4 CNI.  

The contribution of a predictor variable is presented in a rescaled percentage bar plot.  

The predictor variable ‘ALLX’ contributes more towards separating class 4 than in 

separating  class 2, and no contribution is shown in separating other class. 
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Figure 3.7  Contribution of predictor variable ‘ALLX’ for CNI’s classification for OAK-
Detailed data with MART(M=14, F=3). 

2. Partial Dependence Plots 

After identifying the most relevant variables, one might be interested in 

attempting to understand the nature of the dependence of the boosted tree model on their 

joint values. 

The analysis of partial dependence plots of the boosted tree approximation on 

selected variables subsets can help to provide a qualitative description of its properties.  

In particular it is expected that those subsets whose effect on the model is approximately 

additive or multiplicative will be most helpful.  

With a K-class classification problem, K separate MART models are fit, one for 

each class.  The response variable y  assumes values in the unordered set }{ kGGG ,...,1= , 

and a particular classifier ( )G x  taking values in G can be defined knowing the class 

conditional probabilities )|Pr()( xx kk Gyp == , 1,...,k K=  as being  

( ) kG G=x  where
1

argmax ( )ll K
k p

≤ ≤
= x . 
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where one only needs to know the largest )(xkp . In particular, for data mining problems 

we might be more interested in the class probabilities ( )kp x , 1,...,k K=  themselves, 

rather than in performing a class assignment.  Let ( )kMf x  be the MART classifier for 

class k, then ( )kp x  is usually taken to be:  

( )

( )
1

( )
kM

lM

f

k K f
l

e
p

e
=

=
∑

x

x
x , 1,...,k K= . 

which ensures that 0 ( ) 1kp≤ ≤x  and that they sum to one.  Larger values of ( )kMf x  

imply a higher probability of observing class k associated with the predictor variable x .  

Partial dependence plots of each boosted tree’s model on a particular subset of predictor 

variables most relevant to class k provide information on how the input variables tend to 

increase or decrease the odds of observing that class. 

The partial dependence of the model in each predictor variable can be visualized, 

providing insight into what values of those variables tend to increase or decrease the odds 

of observing that class.  If variables are categorical variables, the partial dependence plot 

is a horizontal bar plot.  The bars are ordered, bottom to top, in ascending categorical 

value and the length, positive and negative, of each corresponding bar represents the 

value of the partial dependence function for that variable value.  Plots are centered to 

have mean partial dependence of zero.  Following the example of classification for OAK-

Detailed data with MART(M=14, J=3), Figure 3.8 presents the partial dependence of 

class 4 (No-CNI) and class 1 (Serious-CNI) on the values of the predictor variable 

‘ALLX’.  The illustration in Figure 3.8 is conforming to Figure 3.7; variable ‘ALLX’ 

increases the odds of observing class 4, Figure 3.8 (b), more than class 1, Figure 3.8 (a). 
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Figure 3.8  Partial dependence plots of ‘ALLX’ for class 1 and class 4 for OAK-Detailed data 
with MART(M=14, F=3). 

Figure 3.9 shows the partial dependence of class 1 (Serous-CNI) on joint values 

of the predictor variables ‘DBOF’ and ‘ALLX’, i.e., the partial dependence of the model 

for class 1 on ‘ALLX’, conditioned on the variable ‘DBOF’. 
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Figure 3.9  Partial dependence of class 1 on joint values of  ‘ALLX’ and ‘DBOF’ for OAK-
Detailed data with MART(M=14, F=3). 

The nature of the partial dependence plots of the model on the joint values of two 

predictor variables depends on the type of the variables.  If both are real-valued, then a 

perspective mesh plot representing the value of the partial dependence function for joint 
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values of the variables is produced.  If both variables are categorical, a series of bar plots 

is produced.  Each bar plot represents the partial dependence of the model on the plotted 

variable, conditioned on the corresponding value of the other variable.  
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IV. KNOWLEDGE BASE ANALYSIS 

A. INTRODUCTION 

The Knowledge Base constitutes the repository of known fraud transactions.  It 

contains information about each identified fraud transaction compiled in a common 

format.  This common format has fields containing original information and also new 

fields, indicators developed by subject matter experts from DFAS, DMDC and the 

DODIG. When matched against transaction information these indicators help to identify 

anomalies in the data, expose fraud or locate internal control weaknesses. 

A major concern is the presence of a significant number of missing values in the 

Knowledge Base.  This chapter focuses on the missing value problem and discusses 

MART’s approach to this problem.  It also addresses the issue about whether the 

classification models, based on the historical Knowledge Base, are really capturing fraud 

and nonfraud patterns in transactions or whether they are classifying some other feature 

that differentiates transactions. 

B. ANALYSIS OF KNOWLEDGE BASE 

1. Data 

The Knowledge Base analysis is performed using the following set of variables, 

explained in Appendix B: 

Table 4.1  Variables Set for Knowledge Base Analysis 

DOV.AMT      DISC.AMT       TRANS.NU      INV.AWAR     INV.RECV     CHK.AWAR       INV.RE1         CHK.INV  

CHK.IN1          MILPAY          DBOF              OTHERX          UNUSUAL       ALLX               Y1.PRIOR       Y1.CUR  

Y2.CUR.1        Y2.CUR.2         Y3.PLUS         ALL.OTHE       ENHANCE      STE                    POBOX          INV.PAYE  

INV.CNT          DOVAMT.2     DOVAMT.1    AVG.5K            PAYEE.4        MULTI.PA         MULTI.AD     INV.SEQ  

PMT.FREQ       PMT.FR1         TINS                MULTI.TI        MULTI.2          MULTI.3            MULTI.4         FEW.PYMT  

MISC.OBL       DUPPAY10     DUPPAY11      NOT.DFAR     NUMADR.K    NUMADREE     NUM.EE.K     MANIND.A 

MANIND.M     PMT.MT.E       PMT.MT.D      PMT.TP.C        PMT.TP.F        PMT.TP.P           PMT.PR. F       PMT.PR.P  

PMT.PR.R        PPA.XM.C        PPA.XM.E 
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2. Missing Values Analysis 

The problem of missing values in analysis is an old one [18].  The waste of data 

and the potential for misleading results which can result from casewise deletion of 

missing values has prompted the development of different techniques for dealing with 

missing values in classification [15].  A summary of methods for dealing with missing 

values is presented in Fujikava [6].  Often missing values are filled in (imputed).  

Properly imputing missing values in data can help in reducing the error rate of the learned 

concepts.  However, imputation must be done with care; otherwise it will introduce 

excessive noise [19].  After the missing values are replaced by imputed values, the new 

values are typically treated as if they were actually observed.  The relative ambiguity 

associated with the imputation process itself introduces additional uncertainty into 

estimates and response predictions.  As suggested in Hastie et all [11], one can measure 

this additional uncertainty by doing multiple imputations and hence creating many 

different training sets.  A predictive model for the response variable can be fit to each 

training set so that the variation across training sets can be assessed.   

Hastie et all [11] recommends two particular approaches in order to deal with the 

missing values problem for tree-based models.  The first more general approach and the 

approach used by CART is the construction of surrogate variables.  When considering a 

predictor for a split, only the observations for which that predictor was not missing, were 

used.  Having chosen the best (primary) predictor and split point, a list of surrogate 

predictors and split points is produced.  The first surrogate is the predictor and 

corresponding split point that best mimics the split of the training data achieved by the 

primary split.  The second surrogate is the predictor and corresponding split point that 

does second best, and so on.  When sending observations down the tree either in the 

training phase or during prediction, the surrogate splits are used in order if the primary 

splitting predictor is missing.  Surrogate splits exp loit correlations between predictors to 

try to alleviate the effect of missing data.  The higher the correlation between the missing 

predictor variable and the other predictor variables, the smaller the loss of information 

due to missing values.  In particular, CART is an example of one learning algorithm that 

deals effectively with missing values through surrogate splits. 
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The second approach suggested by Hastie et all [11] is applicable to categorical 

predictors and defines missing values as a new category or extra class.  Exploring this 

particular technique it might be discovered that observations with missing values for 

some measurement behave differently than those with nonmissing values.  This approach 

relies on the learning algorithm to deal with the missing values in its training phase.  This 

approach is adopted by MART methodology.  

Missing values in MART are handled as an extra class inside each effected 

predictor variable.  A considerably high value (9E+30 as default; the value 98+30 present 

in the plot is the result of a display truncation of 8.99999998E+30) is assigned to each 

missing value; in this way, the process of classification will consider missing values as a 

part of the classification model.  The missing value classes will contribute to maintaining 

those observations as part of the classification process, influencing the accuracy of the 

classification model in the prediction process.  
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(d)   Smallsys 

Figure 4.1  Partial dependence plots of ‘MANIND.M’ for fraud classes in KB. 

Figure 4.1 gives an example of singleplots (generated with R 1.5.0) from the 

Knowledge Base analysis that illustrate the way MART deals with missing values present 

in the predictor variable ‘MANID.M’.  In particular, Figure 4.1 (b) gives some insights 

about the way missing values contributes to increasing the odds of observing fraud class 

2 (Opportunistic).  A contrasting effect can be seen in Figure 4.1 (c) and (d) where 

missing values are as important as MANIND.M category 0 for observing fraud class 3 

(Piggyback), and as ‘MANIND.M’ category 1 for observing fraud class 4 (Smallsys).  In 

plot (c), category 1 of ‘MANIND.M’ assumes capital importance in increasing the odds 

of observing fraud class 3, while in plot (d) it is ‘MANIND.M’ category 0 that most 

contributes to increasing the odds of observing fraud class 4 (Smallsys).  Plot (a) shows 

that no partial dependence exists between fraud class 1 (Bigsys) and the predictor 

variable ‘MANIND.M’.  

a. Missing Data Patterns 

The first issue in dealing with the missing value problem is determining 

whether the missing data mechanism has distorted the observed data, since the 

knowledge of the mechanisms that led to certain values being missed constitutes a key 

element in choosing an appropriate analysis and interpreting the results.  Little and Rubin 

[14] divide these mechanisms into three categories: Missing Completely at Random 
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(MCAR), Missing at Random (MAR), and Nonignorable.  Missing data is considered to 

be MCAR when the mechanism that produces the missing data is not related to the value 

that should have been observed for that data point.  Generally, one can test whether 

MCAR conditions can be met by comparing the distribution of the observed data between 

the subset with missing values and the subset without missing values.  Missing data is 

considered to be MAR when the missingness depends on some of the variables in the 

analysis, but conditional on those variables, is not related to the value that should have 

been observed for that data point, i.e, the mechanism resulting in its omission is 

independent of its (unobserved) value [11].  MCAR is a stronger assumption than MAR; 

most imputation methods rely on MCAR for their validity.  Lastly, missing data is 

considered to be nonignorable when missingness is nonrandom and is not predictable 

from any one variable in the database.  Typically, this type of missing data is the hardest 

condition to deal with, but unfortunately, the most likely to occur as well.  

b. Nonrandom Pattern of Missing Values 

DFAS recognizes that one of the greatest problems in the Knowledge Base 

is the high rate of missing values for particular predictor variables.  Table 4.2 shows the 

most relevant information about missing value variables with a missing percentage 

greater than 1%. 

Table 4.2  Missing values in Knowledge Base predictor variables. 

Total 
MAN.IND Present Count 126 

  Percent 28.5 
 Missing % Missing 71.5 

PMT.TYPE Present Count 435 

  Percent 98.4 
 Missing % Missing 1.6 

PMT.PROV Present Count 172 
   Percent 38.9 

  Missing % Missing 61.1 
        

A two-sample t test is one way to check if data are missing completely at 

random.  If the values of a variable are MCAR, then other quantitative variables should 
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have roughly the same distribution for cases separated into two groups based on pattern: 

missing or present. 

 

Figure 4.2  Boxplot of DOVAMT by fraud category grouped by ‘MANIND’ pattern. 

Figure 4.2 shows the Disbursing Office Voucher Amount – ‘DOVAMT’ 

by fraud category grouped by Manual Indictor ‘MANIND.’  Within each fraud class, 

means of ‘DOVAMT’ are slightly higher for missing ‘MANIND’ values.  Despite the 

reduced number of cases in missing ‘PMTTYPE’ pattern, the mean value of ‘DOVAMT’ 

is significantly higher for observations missing the ‘PMTTYPE’ pattern than for those in 

which it is present, as shown in Figure 4.3. 
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Figure 4.3  Boxplot of ‘DOVAMT’ by fraud category grouped by ‘PMTTYPE’ pattern. 

A missing indicator variable that indicates whether the value of the 

variable is present or missing is created for each variable.  Welch’s modification of the 

Student’s t Test for differences in means with unequal variances is used with groups 

formed by indicator variables.  The groups are determined by whether the indicator 

variable is coded present or missing.  The t statistic, counts of missing and nonmissing 

values, number of degrees of freedom, and means of the two groups are displayed in 

Appendix D.   

Results of the t test confirm that average ‘DOVAMT’ is significantly 

higher when ‘MANIND’ is missing than when it is present.  For each quantitative 

variable, the unequal variances t test is performed, comparing the means for those 

variables (row) with at least 1% missing data; when only a few values are missing, the t 

statistics are not informative. 

Both the size and location of bolded t values in Table 4.3 confirm earlier 

observations that ‘MANIND’ and ‘PMT.PROV’ have different nonrandom patterns of 

missing data. 
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Table 4.3  Unequal Variance t tests – t values 

 DOV.AMT DISC.AMT TRANS.NU INV.AWAR INV.RECV CHK.AWAR INV.RE1 CHK.INV. CHK.IN1 

MAN.IND -4.4 3.3 -.9 10.9 10.1 9.1 -3.6 -6.9 -6.4 

PMT.TYPE -1.8 3.2 2.3 2.9 3.1 3.5 2.3 5.5 3.8 

PMT.PROV -1.8 3.0 2.4 6.3 6.2 5.4 -1.0 -3.1 -4.0 

 

Figure 4.4 shows a profile of the mean differences of those variables when 

‘MANIND’ is missing and present.  All the variables are transformed to z scores in order 

to assure comparability.  When ‘MANIND’ is missing, the means of all quantitative 

variables are lower than when it is present.  

 

Figure 4.4  Profile of means for ‘MANIND’ patterns 

In conclusion, it can be said that missing values in the Knowledge Base 

are not missing completely at random but rather present a nonrandom pattern. 
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3. Analysis With MART 

The following analysis offers an overview over the Knowledge Base data-

structure using MART. This initial analysis, based on the MART (M=179, J=2) model, 

highlights some issues such as fraud classification structure inside the Knowledge Base 

and the way MART deals with missing values.  
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Figure 4.5  Total misclassification error 

The misclassification risk structure in Figure 4.5 shows that total error rate 

(10.2%) is associated with fraud class 2 (Opportunistic), 3 (Piggy) and 4 (Smallsys) 

misclassifications. 

Exploring the misclassification associated with each fraud class, Figure 4.6 (a), 

(b) and (c) describes the error rate  associated respectively with fraud class 2 

(Opportunistic), 3 (Piggy) and 4 (Smallsys).  
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Figure 4.6  Fraud classes misclassification error. 

The next set of plots in Figure 4.7 shows the relative important variables in 

classifying each fraud class inside the Knowledge Base. 
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Figure 4.7  Important variables for classifying different fraud categories. 

Figure 4.8 explores partial dependences of the missing valued variable, 

‘MANIND’. Variable ‘MANIND.M’ has partial dependences on fraud class 2 

(Opportunistic), class 3 (Piggy) and class 4 (Smallsys).  This is not surprising since this 

variable is present in all sets of important variables except for fraud class 1 (Bigsys).  For 

class 2 in particular (Figure 4.8 (a)), the partial dependence is mostly due to the missing 
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values class.  Notice that ‘MANIND.A’ and ‘MANIND.M’ present the same missing 

value structure. 
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(a) Partial dependence on Opportunistic class 
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(b) Partial dependence on Piggyback class 

0

1

8.99999998e+30

Partial dependence

M
A

N
IN

D
.M

-0.05 0.00 0.05 0.10 0.15

 

(c) Partial dependence on Smallsys class 

Figure 4.8  Partial dependence plots of ‘MANIND.M’ on fraud classes  

Further conclusions can be drawn from similar partial dependence plots, in 

particular for partial dependence of ‘PMT.TP.F’ on fraud class 2, ‘PMT.TP.C’ on class 3 

and ‘PMT.MT.D’ and ‘PMT.PR.R’ on class 4.  The most significant issues are missing 

value related and it can be noticed in all these variables the presence of related missing 

values dependence on classifying each related fraud class. 
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Special attention ought to be paid to the conditional dependence of predictors in 

addition to the singular partial dependence of fraud classification on identified important 

predictors. 

Figure 4.9 shows conditional dependence of fraud classes on predictors 

‘DOVAMT’ and ‘MANIND.M’.  Plots show the partial dependence of each fraud class 

on variable ‘DOVAMT’, conditioned on each value ‘MANIND.M’ assumes, including 

the missing value category.  As expected in plot Figure 4.9 (b) one can see no 

dependence of fraud class 2 on ‘DOVAMT’ since was not identified as important for 

classifying Opportunistic fraud. 
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(a) Bigsys  
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(b) Opportunistic 
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(d) Smallsys 

Figure 4.9  Paired dependence plots of ‘DOVAMT’ conditioned by ‘MANIND.M’ on fraud. 
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Plot Figure 4.9 (a), (c) and (d) show respectively the partial dependence of fraud 

class 1 (Bigsys), class2 (Opportunistic) and class 4 (Smallsys) on ‘DOVAMT’ when 

conditioned by each ‘MANIND.M’ category, including the missing va lue category.  It 

can be seen that the partial dependence on ‘DOVAMT’ conditioned by missing values 

and the partial dependence on ‘DOVAMT’ conditioned by ‘MANIND.M’ follow a paired 

similar pattern for class 3 (Piggy) and class 4 (Smallsys) fraud classes. 

The hash marks at the base of each plot identify the deciles of the data distribution 

of the corresponding variables. 

By repeatedly applying the procedures singleplot and pairplot to generate single 

partial dependences and conditional dependences plots, one can graphically examine the 

predictive relationship between predictor variables and fraud. 

4.  Imputing Missing Values 

Because imputing missing values is such a common technique, it is important to 

compare the results of imputations with the results of MART’s method of handling 

missing values.  The technique used in this section to impute missing values is based on a 

voting system in which missing values in some variable are estimated by the remaining 

set of predictor variables.  MART is the tool used for this prediction.  

A separate MART model is fit for each variable with identified missing values.  

In each model that variable is taken to be the response.  All the other variables constitute 

the set of predictors used to train the classification model. 

For each missing-valued variable in the Knowledge Base only those observations 

without missing values are used to train the MART model; the remaining set of 

observations constitute the classification target set (those for which missing values are 

imputed or estimated with the MART model). 

Two analyses are performed, one without the fraud variable included in the set of 

the predictor variables, and a second one including this particular field.  The basis of this 

approach resides in the elementary principle of imputing a missing value based on the 

contribution of other variables.  This approach directs the attention of strong predictor 



41 

candidates to those variables affected by missing values, here called weak predictor 

candidates.  The concept of weak and strong predictor candidates resides in the degree of 

present or absent missing values.  The objective is to strengthen the set of predictor 

variables, reducing the degree of fuzziness in predicting fraud. 

For each variable with missing values, a “best” model, the model with smallest 

error rate and tree size is selected.  Figure 4.10 summarizes the ensemble dimension and 

tree size for the best model for each variable with missing values.  
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Figure 4.10 Selecting the best model for missing values analysis 

We note that because the variables with missing values are categorical, imputation 

with MART yields predicted probabilities that the missing value falls into a particular 

class.  For example the variable ‘PMTTYPE’ takes three possible values ‘PMTTYPE’=C, 

‘PMTTYPE’=F and ‘PMTTYPE’=P.  Predicted probabilities for the three possible 

categories for PMTTYPE and for seven transactions where PMTTYPE is missing are 

given in Table 4.4.  This particular example is useful to illustrate how different prediction 

probabilities are used to select the final classification. The missing value is entered as the 

category with the largest predicted probability.  The different discriminative power of 

prediction probabilities associated with cases 1 and 7 are illustrative of the degree of 

fuzziness one prediction can have. 
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Table 4.4  Predicted ‘PMTTYPE’ categories using swarm technique in the Knowledge Base. 

Observation PMTTYPE=C PMTTYPE=F PMTTYPE=P 
1 0.1015390 0.6949781 0.2034829 
2 0.1554473 0.5076495 0.3369032 
3 0.1013682 0.6862710 0.2123609 
4 0.1253940 0.6723630 0.2022430 
5 0.1253940 0.6723630 0.2022430 
6 0.1253940 0.6723630 0.2022430 
7 0.2237105 0.3962993 0.3799900 

 

Finally, Table 4.5 summarizes the results of this analysis.  Three different 

methods for handling missing values are compared based on their misclassification risk. 

The first method applies MART relying on MART’s default methodology for treating 

missing values.  In the second method, missing values are guessed using common sense 

and no systematic methodology.  The third method imputtes missing values using 

MART. 

Table 4.5  Comparison of missing values treatments for Knowledge Base. 

Knowledge Base  Best Misclassification risk MART(M, F) 
MART 0.0114 (362, 3) 
Guessing 0.0114 (271, 2) 
Imputting Missing Values 0.0114 (498,2) 

 

The result of this study shows that no advantage is achieved when we proceed 

with missing values imputation.  The effort of trying to fix the nonrandom missing value 

patterns in the Knowledge Base with various imputation methods does not result in 

models which perform better than MART. 

C. THE EFFECT OF MISSING VALUES IN KB ON PREDICTING FRAUD 

Here we inspect the degree to which the Knowledge Base cases training models to 

predict fraud.  The main question resides in the fact that the mix of historical fraud cases 

from the Knowledge Base with current transactions might not be classifying transactions 

as fraud and nonfraud, but classifying transactions according to another feature that 

differentiates the historical fraud transactions from nonfraud transactions, such as 
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differences in business practices in the two groups.  Variables with missing values in the 

Knowledge Base are indicative of such changes.  We cannot answer this question 

directly. To shed light on this issue we ask the related question: whether the differences 

in the proportion of fraud cases classified using the Knowledge Base at the six different 

sites, Dayton, Oakland, San Antonio (CAPS), San Antonio (IAPS), San Diego and 

Pensacola are different. 

The null hypothesis for testing homogeneity is defined assuming different sites 

have an equal proportion of cases identified as fraud; the alternative hypothesis states that 

at least one of the sites has a different proportion of fraud.  A test of homogeneity is 

conducted at a significance level of .05 and the null distribution of the usual test statistic 

is  Chi-square with 15 degrees of freedom, since 6 populations of interest (I) and 4 

categories (J) are present.  The categories involved in the study were the site 

(Fraud/Nonfraud) and KB (Fraud/Nonfraud). 

The proportions involved in the test result from different models trained on 

particular training sets.  A training and a testing set were chosen for each site.  The 

Knowledge Base was divided into two fixed sets with 316 and 116 observations, 

randomly selected, that are used respectively as training and test sets at all sites.  

Table 4.6 summarizes the structure of each site’s training and test set.  Each of 

these twelve files consists of a random sample drawn independently from each population 

site plus the Knowledge Base observations.           

Table 4.6  Training and Test set for Analysis of Fraud proportion in different sites. 

Site Training set Testing sets 

Dayton 3000 + 316(KB) 17560 ; 116 (KB) 

Oakland 3000 + 316(KB) 14500 ; 116 (KB) 

San Antonio [CAPS] 3000 + 316(KB) 17870 ; 116 (KB) 

San Antonio [IAPS] 3000 + 316(KB) 19873 ; 116 (KB) 

San Diego 3000 + 316(KB) 16902 ; 116 (KB) 

Pensacola 3000 + 316(KB) 28400 ; 116 (KB) 

 

For each site, the least complex model (smallest F tree size) among those with the 

smallest misclassification rate is selected.  Table 4.7 summarizes each site’s model 
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selection and respective misclassification risk.  The adopted representation of MART 

models, MART (M, F) means an ensemble of M single F-sized trees. 

 Table 4.7  Selected Models for Analysis of Fraud proportion in different sites. 

Site Model 
MART(M, F) 

Test Misclassification risk 

Dayton MART(138, 4) 0.003 

Oakland MART(161, 3) 0.000 

San Antonio [CAPS] MART(178, 5) 0.000 

San Antonio [IAPS] MART(118, 4) 0.000 

San Diego MART(140, 4) 0.001 

Pensacola MART(145, 4) 0.000 

 

From the result of the analysis we reject the null hypothesis that the proportion of 

fraud is equal for all the different sites. 

It can be seen in Figure 4.11 that significant differences exist between sites, 

supporting the rejection of homogeneity in site fraud proportions.  The “common 

proportion” line shows the estimated fraud level under the null hypothesis, where all 

sites’ data can be combined. 
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Figure 4.11 MART predicted vs. Expected site fraud proportion. 
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Multicomparison of the proportions using Bonferoni’s inequality show that fraud 

proportion in Dayton is different at the .05 significance level from all the other sites.  San 

Antonio [IAPS] is also different from all other sites. 

Each of these sites, Dayton and San Antonio [IAPS], use the vendor payment 

system IAPS.  This fact can give us an insight into the fact that in the Knowledge Base 

factors such as technology or a business practice rather than fraud are contributing to 

train models in predicting fraud.  

The other sites have different vendor payment systems, summarized in Table 4.8. 

Table 4.8  Sites vendor payment system 

Site Payment System 

Dayton IAPS 

San Antonio [IAPS] IAPS 

San Antonio [CAPS] CAPS 

Oakland STARS 

San Diego STARS 

Pensacola STARS 

 

It seems that CAPS payment system is closer in a certain sense to the STARS 

system than it is to IAPS, which is far way from both CAPS and STARS. 

This particular result reveals some insights about the validity of the Knowledge 

Base to train models for fraud prediction.  It is plausible that models trained with the 

actual fraud historical data are predicting something other than fraud.  This drawback and 

the presence of the missing values strongly suggest that efforts be taken to update the 

Knowledge Base with fraud cases that use more current accounting systems. 

D. CONCLUSIONS 

It is possible to identify the relationship and importance that missing values have 

on fraud classification.  The usefulness of partial dependence plots in recognizing this 

relationship, when derived in parallel with the identification of important variables, 

identification is clear.  In particular, this analysis gives some insights into the way 
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missing values contribute to increasing the odds of observing fraud.  Also, conditional 

dependences can be graphically assessed, which helps to draw conclusions about the 

predictive relationship between predictor variables and fraud. 

The analysis of missing values patterns also reveals asymmetries in fraud data due 

to a recognized nonrandom pattern. 

The MART approach to the problem of missing values was compared to a 

technique designed to impute missing values, based on prediction probabilities.  The 

unchanged misclassification risk gives support to the way MART deals with and 

approaches the missing values problem.  

The insight that Knowledge Base is training models in classifying and predicting 

patterns other than fraud constitutes a finding that could contribute to concentrating 

efforts on improving the actual quality of the Knowledge Base repository. 
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V. CLASSIFYING FRAUD AND CNI’S 

The content of this chapter will focus on analysis of both the Knowledge Base and 

the CNI database.  The set of tools included in MART makes possible the exploration of 

both databases and offers several insights.  The following sections will answer the 

questions about (a) the identification of relative importance of variables for predicting 

fraud and CNI classification; (b) the discussion of continuous versus categorical predictor 

sets for fraud classification; (c) the usage of a binary fraud response variable versus a 

four-category response variable; and (d) an overview of the MART models’ performance 

at different sites, compared with the results presented in Jenkins [12].  

A. IMPORTANT PREDICTORS FOR CLASSIFICATION 

The analysis developed in the following subsections offers several insights into 

fraud prediction information.  The identification of the elementary information useful for 

detecting fraud patterns in the Knowledge Base is presented here through the 

identification of the relative important variables.  This same analysis is then repeated for 

the CNI database, offering results concerning the identification of the relative important 

predictors in classifying CNI’s.   

1. Fraud’s Important Predictors  

This subsection relies on the identification of the most important variables for 

fraud classification.  The nonfraud transactions mentioned here were selected from the set 

of CNI4’s contained in the CNI database.  Training data sets for this analysis were 

constructed from the Knowledge Base plus a subset of CNI4’s (170) from 6 sites audited 

so far.  A set of several MART(M, F) models were identified.  Each site contributed with 

a subset of CNI4 added to the known set of fraud transactions, defining the training set.  

A set of 59 variables, 11 continuous and 48 categorical, constitutes the base for the 

present analysis.  A further analysis about the relative importance of continuous versus 

categorical variables for fraud classifications is presented in section B. 
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Figure 5.1 shows the set of important variables for classifying nonfraud.  

Continuous predictors’ names are followed by (*).  The horizontal scale is weighted one 

in which importance is computed based on a voting scheme that measures the relative 

importance of each variable present on each site’s MART(M,F) model. Here, the 

weighted relative importance of each predictor is the result of the sum of the individual 

measure of importance, on each model, divided by the largest sum of importance between 

all selected predictors.  The final result is a weighted relative importance rescaled from 0 

to 1, with 1 being assigned to the variable with the largest relative importance.   
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Figure 5.1  Variable Importance for classifying nonfraud 

The process of identification of relative important variables for classifying 

nonfraud did not included nine of the categorical variables.  The set of variables with no 

relative importance, ‘BRAC’, ‘FEW_PYMT’, ‘MILPAY’, ‘MULTI_TINS_K’, 

‘MULTI_TINS’, ‘NOT_DFAR’, ‘OTHERX’, ‘PMT_METH_D’, ‘Y1_PRIOR’, identifies 

the variables never present in any ensemble defined for nonfraud classification.  
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Figure 5.2 shows the set of relative important variables for classifying Bigsys. 
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Figure 5.2  Variable Importance for classifying Bigsys 

For classifying Bigsys from an initial set of 59 candidate predictor variables, the 

following set of 14 categorical variables show no importance: ‘ALL_OTHER’, ‘BRAC’, 

‘DISCOUNT’, ‘DOVAMT_1K’, DOVAMT_2K’, ‘FEW_PYMT’, ‘INTEREST’, 

‘MANIND_M’, ‘MULTI_PAYE’, ‘MULTI_EFT_K’, ‘PMT_METH_D’, 

‘TRANS_NUM’, ‘UNUSUAL’, ‘Y2_CUR_1ST’.  Results were reviewed with the data 

mining staff for reasonableness, revealing that the selected predictors made sense in 

predicting Bigsys; the top 3 predictors in order of relative importance are the continuous 

variable “DOV_AMT” (the amount of the payment) and the categorical variables 

“PMT_FREQ” (a flag indicating the frequency of payments to the vendor) and 

“MANIND_A” (a flag indicating whether the payment was automatic or not).  
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Figure 5.3 shows the relative important variables for classifying Opportunistic 

fraud category. 

Important predictors for Opportunistic classification 
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Figure 5.3  Variable Importance for classifying Opportunistic 

The set of variables not contributing for classifying Opportunistic fraud category 

includes 12 categorical variables ‘ALL_OTHER’, ‘BRAC’, ‘DISCOUNT’, 

‘FEW_PYMT’, ‘INTEREST’, ‘INV_SEQ’, ‘MILPAY’, ‘MULTI_TINS_K’, 

‘MULTI_EFT_K’, “MULTI_TINS’, ‘OTHERX’, ‘PMT.METH.D’ and the continuous 

variable ‘DISC_AMT’.  The top 3 predictors in order of relative importance are the 

categorical variables “PMT_FREQ” (a flag indicating the frequency of payments to the 

vendor), “MANIND_A” (a flag indicating whether the payment was automatic or not) 

and “PMT_TP_F” (a flag indicating whether or not the payment was a final or partial 

payment).  
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Figure 5.4 shows the relative important variables for classifying Piggy fraud 

category. 

Important predictors for Piggy classification 
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Figure 5.4  Variable Importance for classifying Piggy 

In Piggy classification the set of candidate predictors not contributing to the 

classification includes the following 15 categorical variables ‘BRAC’, ‘DISCOUNT’, 

‘DUPPAY102’, ‘ENHANCE’, ‘FEW_PYMT’, ‘INTEREST’, ‘MILPAY’, 

‘MULTI_TINS_K’, ‘MULTI_TINS’, ‘PMT_METH_D’, ‘PMT_METH_E’, ‘STE’, 

‘Y2_CUR_1ST’, ‘Y2_CUR_2ND’ and ‘Y2_PRIOR’.  The top 3 predictors in order of 

relative importance are the categorical variables “ALLX” (a flag indicating whether or 

not the payment was made from an “X” year appropriation) and “Y1_CUR” (a flag 

indicating whether or not the payment was made from a ‘1 year current’ appropriation), 

and the continuous variable “DOV_AMT” (the amount of the payment). 
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Figure 5.5 shows the relative important variables for classifying Smallsys fraud 

category. 

Important predictors for Smallsys classification 
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Figure 5.5  Variable Importance for classifying Smallsys 

For Smallsys classification the set of candidate predictors not contributing for its 

classification includes 17 categorical variables ‘ALL_OTHER’, ‘DOVAMT_1K’, 

‘DUPPAY102’, ‘FEW_PYMT’, ‘INTEREST’, ‘MILPAY’, ‘MULTI_TINS_K’, 

‘MULTI_EFT_K‘, ‘MULTI_TINS’, ‘OTHERX’, ‘PMT_METH_D’, ‘PMT_TYPE_C’, 

‘STE’, ‘UNUSUAL’, ‘Y1_CUR’, ‘Y2_PRIOR’, ‘Y2_PLUS’ and the continuous variable  

‘DISC_AMT’.  The top 3 weighted relative important variables for classifying Smallsys 

are the categorical variables “ENHANCE” (a flag indicating whether or not the first 

address line is populated with the payee) and “MANIND_A” (a flag indicating whether 

the payment was automatic or not) and the continuous variable “DOV_AMT” (the 

amount of the payment). 
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In the overall process of fraud/ nonfraud classification it was found that variables  

‘FEW_PYMT’ and ‘PMT_METH_D’ have never been involved in classifying any 

category of fraud or nonfraud. 

2. CNI’s Important Predictors  

This subsection deals with the identification of important variables for CNI’s 

identification.  It is interesting to compare the results for nonfraud important variables 

with CNI4 classification important variables.  The nature of both nonfraud and CNI4 is 

the same, but the presence of distinct patterns associated with fraud cases and those 

related to CNI’s determine the importance of each predictor for classifying each pattern.   

This analysis identified two variables that had never been involved in the process 

of splitting the different CNI categories, ‘MANIND_A’ and ‘PMT_METH_D’.  

The representative plots of the most important variables in classifying Serious 

CNI’s (CNI1), CNI’s (CNI2) and noCNI (CNI4) are shown in Appendix E.  

The fact that different variables are important in classifying CNI’s and Fraud does 

not by itself indicate that CNI and Fraud are different types of cases.  However, this 

together with the observation that the models for which fraud prediction classification 

rate are high, tend to do more poorly in predicting CNI’s than models with less ability to 

predict fraud, indicate that CNI’s and Fraud records may not be as related as previously 

thought [12].  One potential source of difference is that auditors classify CNI’s where 

Fraud cases have been prosecuted.  The alternate theory (especially for Bigsys and 

Smallsys) is that people who are committing fraud might go through extra lengths to 

ensure there are no CNI’s on the fraudulent voucher, which would call attention by the 

audit staff.  It may be that modeling on CNI’s is a great way to predict CNI’s in a 

population, which is useful to the audit staff, but not a good way to predict fraud in a 

population.   DFAS efforts are now underway to look more closely at the consistency of 

audits across sites. 
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B. TRAINING SETS 

This section addresses two main issues: the first, about the practice of 

categorization continuous variables into categorical variables and the second about the 

best response variable, fraud-4cat (Bigsys, Opportunistic, Piggy, Smallsys and nonfraud) 

versus fraud-binary (fraud/nonfraud) for supporting model training.  The amount of time 

spent in categorizing continuous variables, reflects the arduous task DFAS has in trying 

to define or identify thresholds to create these categorical variables.  The potential benefit 

that categorical variables are handled more easily and contribute models running faster 

needs to be balanced against the fact that appropriate thresholds might evolve over time 

and might differ from site to site.  Example of this is the dollar amounts associated with 

contracts, which are subject to fiscal and inflation changes. In addition, changes in 

accounting procedures will shift thresholds, requiring a new analysis and redefinition.  

The way MART deals with continuous and categorical variables offers an opportunity to 

explore this problem and observe the results MART selects for identifying important 

variables for fraud classification.  In addition, easily dealing with continuous and 

categorical variables, MART is also faster than CART and NN, and easier to implement. 

1. Continuous versus Categorical Candidate Predictors  

This sub-section gives an overview about the performance of MART models 

trained on different training sets.  It includes models with continuous and categorical 

variables (CaCo), models with only categorical (Ca) variables and models with only 

continuous variables (Co).  
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      Classification rates with continuous and categorical 
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Figure 5.6  Classification rates for models with continuous and categorical variables 

Figure 5.6 presents a performance overview of different models trained on 

training sets with continuous (Co) and categorical (Ca) variables.  With the exception of 

SD, there is not real benefit to using the categorical variables over the continuous 

variables.  The fact that the categorical variables perform about the same as the 

continuous variables supports the idea that DFAS is identifying appropriate thresholds for 

each continuous variable. 

Figure 5.7 gives the classification rates for site models trained on continuous 

(Co), categorical variables (Ca) and the combination of both continuous and categorical 

(CaCo) variables with a fraud-4cat response.  In particular, it gives an odd pattern of 

CaCo classification rates associated with OAK and SD sites.  Figure 5.8 gives a slightly 

different view; it includes an additional case, site models trained with fraud as a binary 

response.  This plot shows the dispersion of classification rates for each set of candidate 

predictors from the Knowledge Base, using MART models at different sites. 
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Figure 5.7  Correct classification rate for models trained on continuous and categorical 
variables for fraud-4cat 

Fraud-4Cat (RND I) versus Fraud-binary (RND II)
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Figure 5.8  Test classification rates for MART models trained with binary fraud and four-fraud    
category 
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  The analysis with continuous variables (RND I/II Co), continuous and 

categorical variables (RND I/II CaCo) and only categorical variables (RND I/II Ca) show 

that all sites but SAI presents similar classification rates for different training set 

configurations. A more formal MANOVA analysis shown that no significant differences 

exist in the mean classifications rates between models where only original continuous 

variables are used, models where only the derived categorical variables are used and 

models where both the original and derived variables are used.  

2. Fraud Response Variable 

A question for Mongoose staff was whether the codification of fraud as binary 

(RND II) rather than as four-fraud category (RND I) would improve the ability to predict 

fraud.  We expect with MART that classifying fraud as binary will give results 

comparable to classifying fraud with more categories (fraud-4cat) because of the method 

MART (and sometimes classification trees) uses to fit models with categorical responses 

that have more than one level.  In order to clarify this question, it is demonstrated that no 

enhancement is achieved by treating fraud as binary.  

Figure 5.8 shows that classification rates do not change significantly when 

MART(M, F) models have to predict fraud classified as binary (RND II) instead of with 

four fraud categories (RND I ).  The training set for RND I/ II MART models is based on 

the Knowledge Base plus a set of CNI4 randomly selected from the 6 sites so far audited.  

The radial plot presents level curves, showing that classification rates assigned to model 

RND I (four fraud categories; Bigsys=1, Opportunistic=2, Piggy=3, Smallsys=4, 

nonfraud=0) and RND II (binary fraud; fraud=1, nonfraud=0) in four different sites and 

over the CNI database do not change significantly.  Different fraud categorization do not 

show influence in MART(M, F) models classification rates for different sets of data 

(OAK, SAC, SD, CNI124) and predictor variables (Co, CaCo, Ca).  Only the SAI site 

shows some difference in classification rates.  

Figure 5.9 and Figure 5.10 show respectively the performance of MART models 

trained on a four-fraud category response variable and a binary fraud response variable. 

In Figure 5.9, for the four-fraud category response variable, models with categorical 
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variables performs equally well for all sites except SAI (almost perfect equilateral 

triangles). 
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Figure 5.9  Test classification rates for MART models trained on four-fraud category 

Figure 5.10 shows that, for a binary fraud response variable, identical behavior is 

observed for the different sites. For SAI the classification rate for the MART model 

trained on continuous predictors with a fraud-binary response is substantially reduced.  
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Figure 5.10 Test classification rates for MART models trained on binary fraud category 
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We note that neural networks and some implementations of CART will give 

different results when fraud is classified as binary (fraud/nonfraud) from when it is 

classified in four categories. MART however does not. Because of the NN design, it is 

expected computational advantages of using response variable fraud as binary 

(fraud/nonfraud).  

3. Importance of Continuous Predictors  

The analysis included eleven continuous variables (‘CHK_AWARD_DT’, 

‘CHK_INV_DT’, ‘CHK_INV_RECV_DT’, ‘DISC_AMT’, ‘DOV_AMT’, 

‘INV_AWAR’, ‘INV_RECV_IND_DT’, ‘INV_RECV_AWARD_DT’, ‘NUM_EE_K’, 

‘NUMADR_K’, ‘NUMADREE’); however ten show importance in classifying fraud.  

Variable ‘DISC.AMT’ was never present in classifying fraud.  The DFAS data mining 

staff revealed that ‘DISC.AMT’ is not associated with fraud because makes the payment 

more visible to audit staff. 

Figure 5.11 shows the most important continuous variables for classifying 

nonfraud.  The variables ‘DISC.AMT’ and ‘CHK_AWARD_DT’ show no importance in 

classifying nonfraud from fraud categories. 
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Figure 5.11 Variable importance for classifying nonfraud with continuous variables 
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Figure 5.12 to Figure 5.15 give the relative important predictors for each fraud 

category, respectively Bigsys, Opportunistic, Piggy and Smallsys. 

Important predictors for Bigsys classification
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Figure 5.12 Variable importance for classifying Bigsys with continuous variables 

 

Important predictors for Opportunistic classification
continuous  variables
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Figure 5.13 Variable importance for classifying Opportunistic with continuous variables 
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Important predictors for Piggy classification
continuous  variables
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Figure 5.14 Variable importance for classifying Piggy with continuous variables 

 
 

Important predictors for Smallsys classification
continuous  variables
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Figure 5.15 Variable importance for classifying Smallsys with continuous variables 

 
 



62 

C. MART MODEL PERFORMANCE   

This section compares the performance of the different models (C5, NN) 

developed by DFAS (Appendix D gives the four sites’ model names and CNI 

classification rates [12]) and the following MART models trained on the Knowledge 

Base plus: (1) MART operating on a subset of the CNI 4 (nonfraud) from each particular 

site (SD, OAK, SAC, SAI);  (2) MART.R operating on a subset randomly selected from 

all CNI4 from the 6 sites so far audited. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

C
la

ss
if

ic
at

io
n

 R
at

e

S
D

9
S

D
17

S
D

19
S

D
20

S
D

21
S

D
22

S
D

23
M

A
R

T
M

A
R

T
.R

N
D

S
A

I1
S

A
I2

S
A

I3
S

A
I4

S
A

I5
S

A
I6

S
A

I7
S

A
I8

S
A

I9
S

A
I1

0
S

A
I1

1
M

A
R

T
M

A
R

T
.R

N
D

S
A

C
1

S
A

C
2

S
A

C
3

S
A

C
4

S
A

C
5

S
A

C
6

S
A

C
7

S
A

C
8

S
A

C
9

S
A

C
10

S
A

C
11

M
A

R
T

M
A

R
T

.R
N

D
O

A
1

O
A

2
O

A
3

O
A

4
O

A
5

O
A

6
O

A
7

O
A

8
O

A
9

O
A

10
O

A
11

O
A

12
O

A
13

O
A

14
O

A
15

O
A

16
O

A
17

O
A

18
O

A
19

O
A

20
O

A
21

O
A

22
O

A
23

M
A

R
T

M
A

R
T

.R
N

D

SD SAI SAC OAK

Sites' Model Names

                    Comparison of Models' Classification Rate

 

Figure 5.16 Comparison of Models’ classification rate 

The analysis of the Figure 5.16 gives some insights about  the influence of the 

CNI4’s origin in the classification rate.  The same MART(M, F) model, MART and 

MART.R, give slightly different classification rates for different sites.  Only in SAI is the 

difference between the two models substantial (7.4% in SAI versus SD 1.9%, SAC 1.7%, 

OAK 0.2%).  Also, in SAI the MART methodology greatly outperforms models based on 
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C5 or NN.  The performance of MART models in OAK and SAC is close to the C5 and 

NN models and in SD MART is worst at predicting CNI’s.  Different MART(M, F) 

models trained with different subsets of CNI4’s produce classification rates that are quite 

different from the other models in SAI and SD but only slightly different on OAK, SAC 

and CNI124 (random test set from CNI database with 6 sites). 

D. CONCLUSIONS 

The identification of the most important variables for fraud and CNI classification 

is produced as the result of a weighted vote of different MART(M, F) models.  In 

particular the set of important variables for classifying nonfraud and CNI4 have 

significant differences, expressing in a certain sense the distance between fraud and CNI 

patterns.  For a threshold of 80% relative importance in fraud classification, the variables 

‘NUM_EE_K’, ‘MANIND_A’ and ‘TINS’ with relative importance of 1.0, 0.95 and 

0.85, give a relative importance in CNI classification of 0.16, 0.30 and 0.00 respectively.  

The same effect is seen in the opposite direction with ‘DOV_AMT’ (1.00), 

‘CHK_AWAR_DT’ (0.99), ‘INV_RECV_IND_DT’ (0.87) and ‘CHK_INV_DT’ (0.85) 

that give relative importance in fraud classification of 0.25, 0.15, 0.10 and 0.15 

respectively.  Thus, the intent of seeking fraud using the CNI database for training 

requires additional analysis.  A preliminary study, conducted over the present fraud and 

CNI databases, suggested that as fraud prediction classification rate increase, the ability 

to predict CNI’s decreases. 

In addition of the question of converting continuous variables into categorical 

predictors has been addressed.  An overview of the performance of different models 

trained on different variables’ training sets, including models with both continuous and 

categorical variables, models with only categorical variables and models with only 

continuous variables has been presented.  The performance of MART(M, F) models 

trained on sets of continuous variables gave a performance close to that the MART(M, F) 

models trained on sets of categorical variables.  The conclusion is time can be saved by 

using continuous variables directly in MART models.   
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In the overall process of fraud/ nonfraud classification it was found that variables  

‘FEW_PYMT’ and ‘PMT_METH_D’ have never been involved in classifying any 

category of fraud or nonfraud. Also, when continuous variables by itself are training 

models, ‘DISC_AMT’ show no contribution to fraud classification.   

The analysis of the advantage of using a fraud-binary response variable versus a 

fraud-4cat response variable, showed, as expected, no significant differences for MART 

models; also, for CART models we expect identical performance for models trained on 

fraud-binary and fraud-4cat response variable. Because of the NN design, we expect that 

using response variable fraud as binary (fraud/nonfraud) will be computationally 

advantageous.  

The comparison of performances of different models (C5, NN) so far developed 

by DFAS and the MART models trained on the Knowledge Base plus: the MART and 

MART.R described earlier exposed some insights about the influence of the CNI4’s 

origin (site) in the classification rate.  The same MART(M, F) model, MART and 

MART.R, give slightly different classification rates between them for different sites.  

Thus, the idea of seeking fraud using the CNI database for training requires additional 

analysis.  Other considerations about the nature of the present CNI information should be 

explored, such as the auditors’ constancy of procedure in inspecting transactions, in order 

to avoid biased patterns from being present in the CNI database.  This is required to 

pursue the intent of fraud detection based on CNI analysis, as supported so far in the 

literature ([12].)    
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VI. CONCLUSIONS AND RECOMENDATIONS 

A. CONCLUSIONS 

The study of the applicability of the MART methodology to DFAS fraud 

detection usage, focuses on four data related issues: (1) the Knowledge Base study that 

includes a missing values analysis; (2) the identification of the important variables for 

fraud and CNI classification; (3) the study of models trained on continuous versus 

categorical variables;  (4) a comparison of MART models’ performance versus C5 and 

NN models.  The most relevant results concerning the applicability of this new 

methodology is its ability to deliver results within a few hours comparable to or better 

than those requiring months of hands-on development by expert data mining teams.  In 

that sense, MART should be seen as a new methodology in the DFAS data mining 

process, assuring a faster data knowledge progress that might improve fraud detection 

ability.   

1. A New Methodology 

MART methodology is shown to be an alternative tool for improving the current 

process of predicting fraud and CNI’s.  This methodology should be seen in an integrated 

knowledge environment where additional information and process improvements are 

offered.  Advantages of introducing MART in the DFAS fraud detection process include 

the facts that  (1) it is not very sensitive to data errors or outliers in predictors or the 

target variable; (2) needs no time-consuming binning activities; (3) permits the selection 

of different type (continuous and categorical) candidate predictors without any previous 

data preparation (data does not require transformation, or other time-consuming 

processing); (4) missing values are handled automatically, contributing to the 

identification of dependences in the classification process; (5) it is resistant to over-

training and models reach their maximum accuracy well before 1,000 trees are grown and 

can be effectively trained with only about 20% of the data; and (6) presents a high speed 

of model development. 
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2. Training Models With Knowledge Base versus CNI Database 

The insight that the Knowledge Base is potentially training models to classifying 

and predicting patterns other than fraud contributes to arguments that the Knowledge 

Base repository should be updated as current fraud cases became available.  This will 

help identify changes or mutations in fraud patterns motivated by fraud perpetrators’ 

intelligence as well as by technology evolution or new process transactions.  The problem 

of an old Knowledge Base, not covering current business practices such as EFT 

payments, and having problems identified here such as missing values is addressed in the 

present study.  Research on the application of the MART methodology to the CNI 

database is needed.   

The Norfolk site (August 2002) was the primary one to be studied using the 

MART methodology for training models on the CNI Database. The purpose was to 

predict CNI’s present in about 22,775 CAPS transactions. Based on a voting system of 

different MART models, thirty-one transactions out of 97 predicted as Serious-CNI or 

CNI were selected by the Mongoose team, and included as audit referrals for the site 

visit. The results of that inspection will be presented in the site report. 

3. About Missing Values 

The missing values analysis included in the Knowledge Base study revealed the 

relationship and importance missing values have on fraud classification.  The usefulness 

partial dependence plots have in recognizing those patterns, when derived in parallel with 

identification of important variables, becomes a major issue in this study for better 

understanding fraud patterns present in the Knowledge Base.  In particular this research 

gives some insights about the way missing values contribute for increasing the odds of 

observing fraud.  

The analysis of missing values pattern also reveals asymmetries in fraud data. A 

recognized nonrandom pattern of missing values might contribute to difficulties in fraud 

prediction. 



67 

A study of imputing missing values support the way MART methodology handles 

the missing values problem and reveals that no fraud prediction advantage is offered by 

imputing values on missing valued predictors present in the actual Knowledge Base.    

4. Identifying Important Variables 

The identification of relative importance of variables for classifying fraud and 

CNI’s highlights the most relevant predictors present in the Knowledge Base and CNI 

database.  The most important variables for fraud and CNI classification have been 

presented as the result of a weighted vote of different MART(M, F) models.  In particular 

the set of important variables for classifying nonfraud and CNI4 present significant 

differences expressing in a certain sense the distance between fraud and CNI patterns.  

For a threshold of 80% relative importance in fraud classification, the variables 

‘NUM_EE_K’, ‘MANIND_A’ and ‘TINS’ with relative importance of 1.0, 0.95 and 

0.85, present a relative importance in CNI classification of 0.16, 0.30 and 0.00 

respectively!  The same effect is registered in the opposite direction with ‘DOV_AMT’ 

(1.00), ‘CHK_AWAR_DT’ (0.99), ‘INV_RECV_IND_DT’ (0.87) and ‘CHK_INV_DT’ 

(0.85) that present relative importance in fraud classification of 0.25, 0.15, 0.10 and 0.15 

respectively. Thus, the idea of seeking fraud using the CNI database for training requires 

additional analysis.  A preliminary study, conducted over the present fraud and CNI 

databases, suggested that as fraud prediction classification rate increase, the ability to 

predict CNI’s decrease.  

5. Continuous versus Categorical Variables 

The study of MART model performance when trained on continuous versus 

categorical variables for predicting fraud supports the fact that data do not require being 

transformed, or preprocessed in any way, for MART training purposes.  This fact reveals 

a major advantage DFAS can explore using this methodology, saving time used to 

convert continuous variables into categorical ones.  MART(M, F) models trained on sets 

of  continuous variables performed about as well as the MART(M, F) models trained on 

categorical set of variables. 
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 For the purposes of supporting other data mining methodologies, the argument 

that categorical variables are handled easily and contribute to models running faster has 

to be balanced against the fact that the ideal cut points might evolve and differ from site 

to site. 

6. Binary versus 4-Category fraud  

The analysis of the advantage of using a fraud-binary response variable versus a 

fraud-4-category response variable, show, as expected, no significant differences for 

MART models. 

7. MART versus C5 & NN 

The comparison of performances of different models (C5, NN) so far developed 

by DFAS and the MART models trained on the Knowledge Base plus: (1) MART - a 

subset of the CNI 4 (nonfraud) from each particular site (SD, OAK, SAC, SAI);  (2) 

MART.R - a subset randomly selected from all CNI4 from the 6 sites so far audited, 

exposed some insights about the influence of the CNI4’s origin (site) in the classification 

rate.  The same MART(M, F) model, MART and MART.R, produces slightly different 

for different sites.  Other considerations should be explored about the nature of the 

present CNI information, such as the auditors’ constancy of procedure in inspecting 

transactions, in order to avoid biased patterns being present in the CNI database.  This is 

required to pursue the intent of fraud detection based on CNI analysis, as supported so far 

in the literature, as reported in Jenkins [12].    

B. RECOMMENDATIONS 

Promote the inclusion of MART methodology in the DFAS data mining process.  

MART automatically handles missing values, allows an automatic selection of candidate 

predictors without preprocessing, it is resistant to over-training and it is fast.  
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Promote the inclusion of continuous predictor variables for training models with 

MART methodology, which do not requires time-consuming operations of binning on 

transformation. 

Promote the update of the Knowledge Base, as a primary goal to support fraud 

detection. 

Promote the analysis of the CNI database, regarding the exploration of biased 

patterns due to auditors’ non-constancy of procedures, and also train new models directly 

on CNI information, to be improved after each new site is audited.  The identification of 

CNI’s supports fraud detection in the sense that reducing CNI’s contributes to a 

controlled environment resistant to the perpetration of fraud.  
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APPENDIX A EXPLORING MART IN R – COMMAND REFERENCE 
 

Importing Data from SPSS 

In order to import data from the SPSS (files *.sav) load the R package foreign: 

      
 
 

 
> oak.kbcni <- read.spss('G:/KBxCNI/kb_oakcni.sav') 
 

Formatting Data inside R 
 

Selecting column 60 (response variable) from oak.kbcni and assign it as a new 

object oak.kbcni.y: 

> oak.kbcni.y <- oak.kbcni[60] 
 

Selecting columns 1 to 59 (candidate predictor variables) from oak.kbcni and 

assign it as a new object oak.kbcni.x: 

> oak.kbcni.x <- oak.kbcni[1:59] 
 

MART command mart(pred, resp, …) requires that pred and resp be matrix 

objects: 

> oak.kbcni.y <- as.matrix((oak.kbcni.y)) 
> oak.kbcni.x <- as.matrix((oak.kbcni.x)) 
 

The following command defines a vector that identifies which variables from the 

predictor set (oak.kbcni.x) are numerical (1), categorical (2) or are excluded (0) from the 

training operation:  
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> kbcni.lx <- c(rep(2,9), rep(1,40), rep(2,3), rep(1,7)) 

Exploring MART inside R 

The command mart(pred, resp, vector, martmode=’class’, tree.size=#) starts the 

MART model definition, specifying the parameters martmode and tree.size: 

 
> mart(oak.kbcni.x, oak.kbcni.y,kbcni.lx,martmode='class',tree.size=3, cat.store=1500000) 
MART execution finished. 
   iters       best   test misclass risk 
     70          33      0.1192 
 

Analyzing the plots progress() we might request MART to go further using 

moremart() to find an ensemble with smallest test misclassification risk: 

 
> moremart() 
 MART execution finished. 
   iters       best   test misclass risk 
    270          33      0.1192 
 
> classerrors() 
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Note: All the classes are ordered in decreasing 
value of their error rate.  The plot represents a 
graphical examination of the class error matrix for 
the test data set. 

> varimp(range=1:8)  
 
 
 
 
 
 
 
 
Note: Plot of the relative predictive importance of 
predictor variables of the current model.  The length 
of each bar is proportional to the estimated 
relevance of the correspondingly labeled input 
variable in making model predictions.  The 
variables are plotted in sorted order of relevance. 
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> classimp() 
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Note: Plot which classes benefit most from the 
presence of particular set of predictor variables.  
The length of each bar is proportional to the 
estimated benefit the correspondingly labeled class 
receives from the specified predictor variables. 

> singleplot(class=2, 'MANIND.M') 
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Note: Plot partial dependence of MART model on a 
selected input variable.  The bars are ordered in 
ascending categorical value and the positive / 
negative length of each corresponding bar 
represents the value of the partial dependence 
function for that variable value. 
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> pairplot(class=2, 'PMT.MTH.D', 'DUPPAY10') 
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(a) 
 

> pairplot(class=2, 'DOV.AMT', 'MANIND.M') 
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(b) 

 

Note: Plot partial dependence of MART model on a 
pair of selected input variable.  If both variables are 
categorical, the bars are ordered in ascending 
categorical value and the positive / negative length 
of each corresponding bar represents the value of 
the partial dependence function for that variable 
value. 
 
Plot (a) shows partial dependence of class 2 (CNI) 
on joint values of the predictor variables 
“DUPPAY10” and “PMT.MTH.D”, i.e., the partial 
dependence of the model for class 2 on 
“PMT.MTH.D”, conditioned on the variable 
“DUPPAY10”. 
 
 
 
 
 
 
Note: Plot (b) shows fraud class-2 conditional 
dependence on predictor variable DOVAMT 
(Numerical), conditioned on each value 
MANIND.M (Categorical) assumes, including the 
missing value category. 
 
The hash marks at the base of each plot identify the 
deciles of the data distribution of the corresponding 
variables. 

 
 
> progress() 
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Note: Monitor progress of MART modeling. 
The first plot shows the test sample 
misclassification risk.  The second one displays the 
fraction of training observations used at each 
iteration. 
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> table(oak.cni.y, martpred(oak.cni.x,probs=F)) 
 

oak.cni.y   1  2   3 4 
        1 173  4   4 1 
        2  38  0   0 0 

           4  56 69 190 0 

 
 
Note: Cross-validation table for true CNI values vs 
present model predicted CNI’s.  

 

Other commands inside R 
 

The following command dimnames(pred) gives the predictors names present in 

the pred matrix: 

> dimnames(oak.kbcni.x) 
 
[1] "DOV.AMT"  "DISC.AMT" "TRANS.NU" "INV.AWAR" "INV.RECV" "CHK.AWAR" 
 [7] "INV.RE1"  "CHK.INV"  "CHK.IN1"  "INTEREST" "MILPA Y"   "DBOF"     
[13] "BRAC"     "OTHERX"   "UNUSUAL"  "ALLX"     "Y1.PRIOR" "Y1.CUR"   
[19] "Y2.PRIOR" "Y2.CUR.1" "Y2.CUR.2" "Y3.PLUS"  "ALL.OTHE" "ENHANCE"  
[25] "STE"      "POBOX"    "INV.PAYE" "INV.CNT"  "DOVAMT.2" "DOVAMT.1" 
[31] "AVG.5K"   "PAYEE.4"  "MULTI.PA" "MULTI.AD" "INV.SEQ"  "PMT.FREQ" 
[37] "PMT.FR1"  "TINS"     "MULTI.TI" "MULTI.2"  "MULTI.3"  "MULTI.4"  
[43] "MULTI.EF" "DISCOUNT" "FEW.PYMT" "MISC.OBL" "DUPPAY10" "DUPPAY11" 
[49] "NOT.DFAR" "NUMADR.K" "NUMADREE" "NUM.EE.K" "MANIND.A" "MANIND.M" 
[55] "PMT.MT.D" "PMT.MT.E" "PMT.TP.C" "PMT.TP.F" "PMT.TP.P" 

Exporting MART results from R 

The following commands illustrate a useful way to export MART results in a txt 

format, easily readable from Microsoft Excel. 

 
> write.table(martpred(nflk.caps, probs =F), 'nflk_cni8_2.txt') 
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APPENDIX B REFERENCE OF VARIABLES USED IN ANALYSIS 
 

The following table constitutes a reference of (59) variables used in Chapter IV 

analysis. 

Reference Name 
  

Variable Name Type Description 

DOV.AMT DOV_AMT Numeric Disbursing Office Voucher Amount 

DISC.AMT DISC_AMT Numeric Discount Amount 

TRANS.NU TRANS_NUM Categorical Number of transactions associated with a 
single payment 

INV.AWAR INV_AWARD_DT Numeric Number of days between invoice date 
and contract award date 

INV.RECV INV_RECV_AWARD_DT Numeric Number of days between invoice 
received date and award date 

CHK.AWAR CHK_AWARD_DT Numeric Number of days between check date and 
award date 

INV.RE1 INV_RECV_INV_DT Numeric Number of days between invoice 
received date and invoice date 

CHK.INV CHK_INV_DT Numeric Number of days between check date and 
invoice date 

CHK.IN1 CHK_INV_RECV_DT Numeric Number of days between the check date 
and invoice received date 

MILPAY MILPAY Categorical Military Pay Appropriation 

DBOF DBOF Categorical DBOF Appropriation 

OTHERX OTHERX Categorical X Year Appropriation other than BRAC, 
DBOF, UNUSUAL 

UNUSUAL UNUSUAL Categorical Appropriation = 5188, 5189, 6875, 3880, 
3875 or 8164 

ALLX ALLX Categorical All X year appropriations 

Y1.PRIOR Y1_PRIOR Categorical 1 year Expired Appropriation  

Y1.CUR Y1_CUR Categorical 1 Year current appropriation 

Y2.CUR1 Y2_CUR_1ST Categorical 2 Year Current Appropriation Paid 1st 
Year 

Y2.CUR2 Y2_CUR_2ND Categorical 2 Year Current Appropriation Paid 2nd 
Year 

Y3.PLUS Y3_PLUS Categorical 3 or more year appropriation 

ALL.OTHE ALL_OTHER Categorical None of the above appropriations 
starting with MILPAY 

ENHANCE ENHANCE_PAYEE Categorical Flag when Payee found in Remit_L1 
field 

STE STE Categorical Pymt made to suite address 

POBOX POBOX Categorical Payments to POBOX 
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Reference Name 
  

Variable Name Type Description 

INV.PAYE INV_PAYEE Categorical Payee with different invoice numb er 
lengths 

INV.CNT INV_CNT Categorical Contract with different invoice number 
lengths  

DOVAMT.2 DOVAMT_2K Categorical DOV_AMT >= to 2000 

DOVAMT.1 DOVAMT_1K Categorical DOV_AMT >= to 1000 

AVG.5K AVG_5K Categorical Average payment amount to payee is >= 
5K 

PAYEE.4 PAYEE_4_PYMT Categorical 4 or more payments to the same payee 

MULTI.PA MULTI_PAYEE Categorical Multiple payees to the same address 

MULTI.AD MULTI_ADR Categorical Muliple address to the same payee 

INV.SEQ INV_SEQ Categorical Invoices out of sequence to the same 
payee 

PMT.FREQ PMT_FREQ_HI Categorical Regular payments over a period of time 

PMT.FR1 PMT_FREQ_LO Categorical Payments occuring in a short period to 
time 

TINS TINS Categorical Tax identification number is present in 
record 

MULTI.TI MULTI_TINS Categorical Multiple TINS for a Payee 

MULTI.2 MULTI_PAYEE_K Categorical Multiple Payees to the same contract 

MULTI.3 MULTI_ADDR_K Categorical Multiple Addresses to the same contract 

MULTI.4 MULTI_TINS_K Categorical Multiple TINS to the same contract 

FEW.PYMT FEW_PYMT Categorical Flag companies that have <200 payments 
in a year 

MISC.OBL MISC_OBLIG Categorical Flag that looks for MORD or MOD in 
the PIIN 

DUPPAY10 DUPPAY102 Categorical Duplicate Payment Indicator 102 - 
Logic: Same PIIN, Same SPIIN, Same 
Inv#, DOV Amt >=2000 

DUPPAY11 DUPPAY110 Categorical Duplicate Payment Indicator 110 - Same 
INV#, Same DOV Amt, DOV Amt >= 
2000 

NOT.DFAR NOT.DFAR Categorical PIIN/Del Ord does not comform to the 
DFAR 

NUMADR.K NUMADR_K Categorical Number of addresses (ADR_L1+CITY) 
to an individual contract (PIIN+DO). 

NUMADREE 
 

NUMADREE Categorical Number of addresses (ADR_L1+CITY) 
to a whole payee. 

NUM.EE.K NUM_EE_K Categorical Number of whole payees to an individual 
contract (PIIN+DO). 

MANIND.A MAN_IND Categorical Manual Indicator {0} 

MANIND.M MAN_IND Categorical Manual Indicator {1} 
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Reference Name 
  

Variable Name Type Description 

PMT.MT.D PMT_METH Categorical Payment Method {D} 

PMT.MT.E PMT_METH Categorical Payment Method {E} 

PMT.TP.C PMT_TYPE Categorical Payment Type {C} 

PMT.TP.F PMT_TYPE Categorical Payment Type {F} 

PMT.TP.P PMT_TYPE Categorical Payment Type {P} 
PMT.PR.F PMT_PROV Categorical Payment Provision {F}  

PMT.PR.P PMT_PROV Categorical Payment Provision {P}  
PMT.PR.R PMT_PROV Categorical Payment Provision {R}  

PPA.XM.C PPA_XMPT Categorical Prompt Payment Act Exempt {C} 

PPA.XM.E PPA_XMPT Categorical Prompt Payment Act Exempt {E} 
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APPENDIX C FRAUD PROPORTION TEST FOR DIFFERENT SITES 
 
 

The following table summarizes the selected models and final prediction results 

for each site studied in the analysis of fraud proportion. 

Site Model 

MART(M, F) 

Test Misclassification rate Prediction over Test sets 

 

Dayton 

 

MART(138, 4) 

 

0.003 

 

table(martpred(v.dyt)) 

     0 1  3  

 17509 2 49 

table(yv.kb,martpred(v.kb)) 

  1   2  3  4  

1 72  1  0  0 

2  0 11  0  0 

3  0  0 10  0 

4  0  0  0 22 

 

Oakland 

 

MART(161, 3) 

 

0.000 

 

table(martpred(v.ok)) 

     0 1 3  

 14496 3 1 

table(yv.kb,martpred(v.kb)) 

   1  2  3  4  

1 72  1  0  0 

2  0 11  0  0 

3  0  0 10  0 

4  0  0  0 22 

 

San Antonio [CAPS] 

 

MART(178, 5) 

 

0.000 

 

table(martpred(v.sac)) 

     0 4  

 17868 2 

 table(yv.kb,martpred(v.kb)) 

   1  2  3  4  

1 72  1  0  0 

2  0 11  0  0 

3  0  0 10  0 

4  0  0  0 22 
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Site Model 

MART(M, F) 

Test Misclassification rate Prediction over Test sets 

 

San Antonio [IAPS] 

 

MART(118, 4) 

 

0.000 

 

table(martpred(v.sai)) 

     0  1  3 4  

 19843 19 10 1 

table(yv.kb,martpred(v.kb.num)) 

   1  2  3  4  

1 72  1  0  0 

2  0 11  0  0 

3  0  0 10  0 

4  0  0  0 22 

 

San Diego 

 

MART(140, 4) 

 

0.001 

 

table(martpred(v.sd)) 

     0 4  

 16900 2 

table(yv.kb,martpred(v.kb)) 

  0  1  2  3  4  

1 0 73  0  0  0 

2 0  0 11  0  0 

3 0  0  0 10  0 

4 2  0  0  0 20 

 

Pensacola 

 

MART(145, 4) 

 

0.000 

 

table(martpred(v.psc)) 

     0 4  

 28397 3 

table(yv.kb,martpred(v.kb)) 

   1  2  3  4  

1 73  0  0  0 

2  0 11  0  0 

3  0  0 10  0 

4  0  0  0 22 
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APPENDIX D MISSING VALUES’ UNEQUAL VARIANCE t TEST 
 
 
  DOV.AMT DISC.AMT TRANS.NU INV.AWAR INV.RECV CHK.AW

AR 
INV.RE1 CHK.INV. CHK.IN1 

t -4.4 3.3 -.9 10.9 10.1 9.1 -3.6 -6.9 -6.4 

df 398.0 125.0 391.5 194.4 197.2 215.4 439.9 435.9 414.9 

P(2-tail) .000 .001 .355 .000 .000 .000 .000 .000 .000 

# Present 126 126 126 126 126 126 126 126 126 

# Missing 316 316 316 316 316 316 316 316 316 

Mean(Present) 17934.8 34.8 1.01 550.8 567.8 584.4 17.1 33.6 16.5 

M
A

N
.IN

D
 

 

Mean(Missing) 34388.7 .0000 1.02 183.5 227.8 279.2 44.3 95.7 51.3 

t -6.9 3.2 2.3 13.3 15.7 16.2 7.7 8.5 3.5 

df 2.0 438.0 438.0 438.0 438.0 438.0 438.0 438.0 438.0 

P(2-tail) .020 .001 .019 .000 .000 .000 .000 .000 .001 

# Present 439 439 439 439 439 439 439 439 439 

# Missing 3 3 3 3 3 3 3 3 3 

Mean(Present) 26480.9 9.9 1.02 289.7 326.5 367.9 36.8 78.3 41.5 

P
M

T.
M

E
TH

 

 Mean(Missing) 500490.3 .000 1.00 76.00 76.0 106.0 .000 30.0 30.0 

t -1.8 3.2 2.3 2.9 3.1 3.5 2.3 5.5 3.8 

df 6.0 434.0 434.0 7.2 7.1 7.1 12.1 48.0 19.2 

P(2-tail) .114 .001 .019 .023 .017 .010 .043 .000 .001 

# Present 435 435 435 435 435 435 435 435 435 

# Missing 7 7 7 7 7 7 7 7 7 

Mean(Present) 26675.1 10.1 1.0 290.7 327.6 369.3 36.9 78.6 41.7 

P
M

T.
TY

P
E

 

  Mean(Missing) 217561.4 .000 1.0 133.9 150.9 173.6 17.0 39.7 22.7 

t -1.8 3.0 2.4 6.3 6.2 5.4 -1.0 -3.1 -4.0 

df 438.7 174.1 171.0 287.4 297.1 333.8 434.2 430.1 419.1 

P(2-tail) .066 .003 .019 .000 .000 .000 .342 .002 .000 

# Present 172 172 172 172 172 172 172 172 172 

# Missing 270 270 270 270 270 270 270 270 270 

Mean(Present) 24323.6 24.32 1.0 417.1 448.4 474.6 31.3 57.5 26.2 

P
M

T.
P

R
O

V 

 Mean(Missing) 33122.1 .7381 1.0 206.2 246.1 297.1 39.9 90.9 51.1 
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APPENDIX E CNI’S IMPORTANT PREDICTORS 

 

Figure E.1, to Figure E.3 show the set of important predictors for classifying 

Serious CNI’s (CNI1), CNI’s (CNI2) and noCNI (CNI4). 
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Figure E.1  Variable importance for classifying Serious CNI’s 
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Important predictors for CNI2 classification

dov_amt (*)
inv_awar (*)

trans_nu
chk_in1 (*)

inv_re1 (*)
chk_awar (*)

inv_recv (*)
chk_inv (*)

duppay11
pmt_mt_e

numadree (*)
multi_pa

pobox
inv_seq
disc_amt (*)

pmt_freq
multi_ad
y3_plus

not_dfar
tins
y2_cur_2

payee_4
all_othe
avg_5k
dbof
multi_3
y1_cur
allx
duppay10
inv_paye
inv_cnt
numadr_k (*)
pmt_tp_f
pmt_tp_p
few_pymt
pmt_fr1
num_ee_k (*)
misc_obl

multi_4
y1_prior
y2_cur_1
interest
multi_2
enhance
dovamt_1
pmt_tp_c
otherx

ste
multi_ti

multi_ef
dovamt_2
manind_m
y2_prior
discount

unusual
brac
milpay

0.00 0.20 0.40 0.60 0.80 1.00

P
re

di
ct

or
s 

va
ria

bl
es

Weighted relative importance

 

Figure E.2  Variable importance for classifying CNI’s 
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Important predictors for CNI4 classification
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Figure E.3  Variable importance for classifying no-CNI’s 
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